MathObject.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/BuiltinWrappers.h>
  9. #include <AK/Function.h>
  10. #include <AK/Random.h>
  11. #include <LibJS/Runtime/GlobalObject.h>
  12. #include <LibJS/Runtime/MathObject.h>
  13. #include <math.h>
  14. namespace JS {
  15. MathObject::MathObject(GlobalObject& global_object)
  16. : Object(*global_object.object_prototype())
  17. {
  18. }
  19. void MathObject::initialize(GlobalObject& global_object)
  20. {
  21. auto& vm = this->vm();
  22. Object::initialize(global_object);
  23. u8 attr = Attribute::Writable | Attribute::Configurable;
  24. define_native_function(vm.names.abs, abs, 1, attr);
  25. define_native_function(vm.names.random, random, 0, attr);
  26. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  27. define_native_function(vm.names.floor, floor, 1, attr);
  28. define_native_function(vm.names.ceil, ceil, 1, attr);
  29. define_native_function(vm.names.round, round, 1, attr);
  30. define_native_function(vm.names.max, max, 2, attr);
  31. define_native_function(vm.names.min, min, 2, attr);
  32. define_native_function(vm.names.trunc, trunc, 1, attr);
  33. define_native_function(vm.names.sin, sin, 1, attr);
  34. define_native_function(vm.names.cos, cos, 1, attr);
  35. define_native_function(vm.names.tan, tan, 1, attr);
  36. define_native_function(vm.names.pow, pow, 2, attr);
  37. define_native_function(vm.names.exp, exp, 1, attr);
  38. define_native_function(vm.names.expm1, expm1, 1, attr);
  39. define_native_function(vm.names.sign, sign, 1, attr);
  40. define_native_function(vm.names.clz32, clz32, 1, attr);
  41. define_native_function(vm.names.acos, acos, 1, attr);
  42. define_native_function(vm.names.acosh, acosh, 1, attr);
  43. define_native_function(vm.names.asin, asin, 1, attr);
  44. define_native_function(vm.names.asinh, asinh, 1, attr);
  45. define_native_function(vm.names.atan, atan, 1, attr);
  46. define_native_function(vm.names.atanh, atanh, 1, attr);
  47. define_native_function(vm.names.log1p, log1p, 1, attr);
  48. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  49. define_native_function(vm.names.atan2, atan2, 2, attr);
  50. define_native_function(vm.names.fround, fround, 1, attr);
  51. define_native_function(vm.names.hypot, hypot, 2, attr);
  52. define_native_function(vm.names.imul, imul, 2, attr);
  53. define_native_function(vm.names.log, log, 1, attr);
  54. define_native_function(vm.names.log2, log2, 1, attr);
  55. define_native_function(vm.names.log10, log10, 1, attr);
  56. define_native_function(vm.names.sinh, sinh, 1, attr);
  57. define_native_function(vm.names.cosh, cosh, 1, attr);
  58. define_native_function(vm.names.tanh, tanh, 1, attr);
  59. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  60. define_direct_property(vm.names.E, Value(M_E), 0);
  61. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  62. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  63. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  64. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  65. define_direct_property(vm.names.PI, Value(M_PI), 0);
  66. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  67. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  68. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  69. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable);
  70. }
  71. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  72. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  73. {
  74. auto number = TRY(vm.argument(0).to_number(global_object));
  75. if (number.is_nan())
  76. return js_nan();
  77. if (number.is_negative_zero())
  78. return Value(0);
  79. if (number.is_negative_infinity())
  80. return js_infinity();
  81. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  82. }
  83. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  84. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  85. {
  86. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  87. return Value(r);
  88. }
  89. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  90. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  91. {
  92. auto number = TRY(vm.argument(0).to_number(global_object));
  93. if (number.is_nan())
  94. return js_nan();
  95. return Value(::sqrt(number.as_double()));
  96. }
  97. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  99. {
  100. auto number = TRY(vm.argument(0).to_number(global_object));
  101. if (number.is_nan())
  102. return js_nan();
  103. return Value(::floor(number.as_double()));
  104. }
  105. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  106. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  107. {
  108. auto number = TRY(vm.argument(0).to_number(global_object));
  109. if (number.is_nan())
  110. return js_nan();
  111. auto number_double = number.as_double();
  112. if (number_double < 0 && number_double > -1)
  113. return Value(-0.f);
  114. return Value(::ceil(number.as_double()));
  115. }
  116. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  117. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  118. {
  119. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  120. double integer = ::ceil(value);
  121. if (integer - 0.5 > value)
  122. integer--;
  123. return Value(integer);
  124. }
  125. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  126. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  127. {
  128. Vector<Value> coerced;
  129. for (size_t i = 0; i < vm.argument_count(); ++i)
  130. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  131. auto highest = js_negative_infinity();
  132. for (auto& number : coerced) {
  133. if (number.is_nan())
  134. return js_nan();
  135. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  136. highest = number;
  137. }
  138. return highest;
  139. }
  140. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  141. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  142. {
  143. Vector<Value> coerced;
  144. for (size_t i = 0; i < vm.argument_count(); ++i)
  145. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  146. auto lowest = js_infinity();
  147. for (auto& number : coerced) {
  148. if (number.is_nan())
  149. return js_nan();
  150. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  151. lowest = number;
  152. }
  153. return lowest;
  154. }
  155. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  156. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  157. {
  158. auto number = TRY(vm.argument(0).to_number(global_object));
  159. if (number.is_nan())
  160. return js_nan();
  161. if (number.as_double() < 0)
  162. return MathObject::ceil(vm, global_object);
  163. return MathObject::floor(vm, global_object);
  164. }
  165. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  166. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  167. {
  168. auto number = TRY(vm.argument(0).to_number(global_object));
  169. if (number.is_nan())
  170. return js_nan();
  171. return Value(::sin(number.as_double()));
  172. }
  173. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  174. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  175. {
  176. auto number = TRY(vm.argument(0).to_number(global_object));
  177. if (number.is_nan())
  178. return js_nan();
  179. return Value(::cos(number.as_double()));
  180. }
  181. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  182. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  183. {
  184. auto number = TRY(vm.argument(0).to_number(global_object));
  185. if (number.is_nan())
  186. return js_nan();
  187. return Value(::tan(number.as_double()));
  188. }
  189. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  190. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  191. {
  192. auto base = TRY(vm.argument(0).to_number(global_object));
  193. auto exponent = TRY(vm.argument(1).to_number(global_object));
  194. return JS::exp(global_object, base, exponent);
  195. }
  196. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  197. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  198. {
  199. auto number = TRY(vm.argument(0).to_number(global_object));
  200. if (number.is_nan())
  201. return js_nan();
  202. return Value(::exp(number.as_double()));
  203. }
  204. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  206. {
  207. auto number = TRY(vm.argument(0).to_number(global_object));
  208. if (number.is_nan())
  209. return js_nan();
  210. return Value(::expm1(number.as_double()));
  211. }
  212. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  213. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  214. {
  215. auto number = TRY(vm.argument(0).to_number(global_object));
  216. if (number.is_positive_zero())
  217. return Value(0);
  218. if (number.is_negative_zero())
  219. return Value(-0.0);
  220. if (number.as_double() > 0)
  221. return Value(1);
  222. if (number.as_double() < 0)
  223. return Value(-1);
  224. return js_nan();
  225. }
  226. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  227. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  228. {
  229. auto number = TRY(vm.argument(0).to_u32(global_object));
  230. if (number == 0)
  231. return Value(32);
  232. return Value(count_leading_zeroes(number));
  233. }
  234. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  235. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  236. {
  237. auto number = TRY(vm.argument(0).to_number(global_object));
  238. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  239. return js_nan();
  240. if (number.as_double() == 1)
  241. return Value(0);
  242. return Value(::acos(number.as_double()));
  243. }
  244. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  245. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  246. {
  247. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  248. if (value < 1)
  249. return js_nan();
  250. return Value(::acosh(value));
  251. }
  252. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  253. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  254. {
  255. auto number = TRY(vm.argument(0).to_number(global_object));
  256. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  257. return number;
  258. return Value(::asin(number.as_double()));
  259. }
  260. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  261. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  262. {
  263. return Value(::asinh(TRY(vm.argument(0).to_number(global_object)).as_double()));
  264. }
  265. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  266. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  267. {
  268. auto number = TRY(vm.argument(0).to_number(global_object));
  269. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  270. return number;
  271. if (number.is_positive_infinity())
  272. return Value(M_PI_2);
  273. if (number.is_negative_infinity())
  274. return Value(-M_PI_2);
  275. return Value(::atan(number.as_double()));
  276. }
  277. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  278. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  279. {
  280. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  281. if (value > 1 || value < -1)
  282. return js_nan();
  283. return Value(::atanh(value));
  284. }
  285. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  286. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  287. {
  288. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  289. if (value < -1)
  290. return js_nan();
  291. return Value(::log1p(value));
  292. }
  293. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  294. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  295. {
  296. return Value(::cbrt(TRY(vm.argument(0).to_number(global_object)).as_double()));
  297. }
  298. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  299. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  300. {
  301. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  302. auto y = TRY(vm.argument(0).to_number(global_object));
  303. auto x = TRY(vm.argument(1).to_number(global_object));
  304. if (y.is_nan() || x.is_nan())
  305. return js_nan();
  306. if (y.is_positive_infinity()) {
  307. if (x.is_positive_infinity())
  308. return Value(M_PI_4);
  309. else if (x.is_negative_infinity())
  310. return Value(three_quarters_pi);
  311. else
  312. return Value(M_PI_2);
  313. }
  314. if (y.is_negative_infinity()) {
  315. if (x.is_positive_infinity())
  316. return Value(-M_PI_4);
  317. else if (x.is_negative_infinity())
  318. return Value(-three_quarters_pi);
  319. else
  320. return Value(-M_PI_2);
  321. }
  322. if (y.is_positive_zero()) {
  323. if (x.as_double() > 0 || x.is_positive_zero())
  324. return Value(0.0);
  325. else
  326. return Value(M_PI);
  327. }
  328. if (y.is_negative_zero()) {
  329. if (x.as_double() > 0 || x.is_positive_zero())
  330. return Value(-0.0);
  331. else
  332. return Value(-M_PI);
  333. }
  334. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  335. if (y.as_double() > 0) {
  336. if (x.is_positive_infinity())
  337. return Value(0);
  338. else if (x.is_negative_infinity())
  339. return Value(M_PI);
  340. else if (x.is_positive_zero() || x.is_negative_zero())
  341. return Value(M_PI_2);
  342. }
  343. if (y.as_double() < 0) {
  344. if (x.is_positive_infinity())
  345. return Value(-0.0);
  346. else if (x.is_negative_infinity())
  347. return Value(-M_PI);
  348. else if (x.is_positive_zero() || x.is_negative_zero())
  349. return Value(-M_PI_2);
  350. }
  351. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  352. return Value(::atan2(y.as_double(), x.as_double()));
  353. }
  354. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  355. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  356. {
  357. auto number = TRY(vm.argument(0).to_number(global_object));
  358. if (number.is_nan())
  359. return js_nan();
  360. return Value((float)number.as_double());
  361. }
  362. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  363. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  364. {
  365. Vector<Value> coerced;
  366. for (size_t i = 0; i < vm.argument_count(); ++i)
  367. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  368. for (auto& number : coerced) {
  369. if (number.is_positive_infinity() || number.is_negative_infinity())
  370. return js_infinity();
  371. }
  372. auto only_zero = true;
  373. double sum_of_squares = 0;
  374. for (auto& number : coerced) {
  375. if (number.is_nan() || number.is_positive_infinity())
  376. return number;
  377. if (number.is_negative_infinity())
  378. return js_infinity();
  379. if (!number.is_positive_zero() && !number.is_negative_zero())
  380. only_zero = false;
  381. sum_of_squares += number.as_double() * number.as_double();
  382. }
  383. if (only_zero)
  384. return Value(0);
  385. return Value(::sqrt(sum_of_squares));
  386. }
  387. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  388. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  389. {
  390. auto a = TRY(vm.argument(0).to_u32(global_object));
  391. auto b = TRY(vm.argument(1).to_u32(global_object));
  392. return Value(static_cast<i32>(a * b));
  393. }
  394. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  395. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  396. {
  397. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  398. if (value < 0)
  399. return js_nan();
  400. return Value(::log(value));
  401. }
  402. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  403. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  404. {
  405. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  406. if (value < 0)
  407. return js_nan();
  408. return Value(::log2(value));
  409. }
  410. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  411. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  412. {
  413. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  414. if (value < 0)
  415. return js_nan();
  416. return Value(::log10(value));
  417. }
  418. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  419. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  420. {
  421. auto number = TRY(vm.argument(0).to_number(global_object));
  422. if (number.is_nan())
  423. return js_nan();
  424. return Value(::sinh(number.as_double()));
  425. }
  426. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  427. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  428. {
  429. auto number = TRY(vm.argument(0).to_number(global_object));
  430. if (number.is_nan())
  431. return js_nan();
  432. return Value(::cosh(number.as_double()));
  433. }
  434. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  435. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  436. {
  437. auto number = TRY(vm.argument(0).to_number(global_object));
  438. if (number.is_nan())
  439. return js_nan();
  440. if (number.is_positive_infinity())
  441. return Value(1);
  442. if (number.is_negative_infinity())
  443. return Value(-1);
  444. return Value(::tanh(number.as_double()));
  445. }
  446. }