Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/OpenFileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/PerformanceEventBuffer.h>
  28. #include <Kernel/PerformanceManager.h>
  29. #include <Kernel/Process.h>
  30. #include <Kernel/ProcessExposed.h>
  31. #include <Kernel/Sections.h>
  32. #include <Kernel/StdLib.h>
  33. #include <Kernel/TTY/TTY.h>
  34. #include <Kernel/Thread.h>
  35. #include <Kernel/ThreadTracer.h>
  36. #include <LibC/errno_numbers.h>
  37. #include <LibC/limits.h>
  38. namespace Kernel {
  39. static void create_signal_trampoline();
  40. RecursiveSpinlock g_profiling_lock;
  41. static Atomic<pid_t> next_pid;
  42. static Singleton<SpinlockProtected<Process::List>> s_processes;
  43. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  44. static Singleton<MutexProtected<String>> s_hostname;
  45. MutexProtected<String>& hostname()
  46. {
  47. return *s_hostname;
  48. }
  49. SpinlockProtected<Process::List>& processes()
  50. {
  51. return *s_processes;
  52. }
  53. ProcessID Process::allocate_pid()
  54. {
  55. // Overflow is UB, and negative PIDs wreck havoc.
  56. // TODO: Handle PID overflow
  57. // For example: Use an Atomic<u32>, mask the most significant bit,
  58. // retry if PID is already taken as a PID, taken as a TID,
  59. // takes as a PGID, taken as a SID, or zero.
  60. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  61. }
  62. UNMAP_AFTER_INIT void Process::initialize()
  63. {
  64. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  65. // Note: This is called before scheduling is initialized, and before APs are booted.
  66. // So we can "safely" bypass the lock here.
  67. reinterpret_cast<String&>(hostname()) = "courage";
  68. create_signal_trampoline();
  69. }
  70. NonnullRefPtrVector<Process> Process::all_processes()
  71. {
  72. NonnullRefPtrVector<Process> output;
  73. processes().with([&](const auto& list) {
  74. output.ensure_capacity(list.size_slow());
  75. for (const auto& process : list)
  76. output.append(NonnullRefPtr<Process>(process));
  77. });
  78. return output;
  79. }
  80. bool Process::in_group(GroupID gid) const
  81. {
  82. return this->gid() == gid || extra_gids().contains_slow(gid);
  83. }
  84. void Process::kill_threads_except_self()
  85. {
  86. InterruptDisabler disabler;
  87. if (thread_count() <= 1)
  88. return;
  89. auto current_thread = Thread::current();
  90. for_each_thread([&](Thread& thread) {
  91. if (&thread == current_thread)
  92. return;
  93. if (auto state = thread.state(); state == Thread::State::Dead
  94. || state == Thread::State::Dying)
  95. return;
  96. // We need to detach this thread in case it hasn't been joined
  97. thread.detach();
  98. thread.set_should_die();
  99. });
  100. u32 dropped_lock_count = 0;
  101. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  102. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  103. }
  104. void Process::kill_all_threads()
  105. {
  106. for_each_thread([&](Thread& thread) {
  107. // We need to detach this thread in case it hasn't been joined
  108. thread.detach();
  109. thread.set_should_die();
  110. });
  111. }
  112. void Process::register_new(Process& process)
  113. {
  114. // Note: this is essentially the same like process->ref()
  115. RefPtr<Process> new_process = process;
  116. processes().with([&](auto& list) {
  117. list.prepend(process);
  118. });
  119. }
  120. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  121. {
  122. auto parts = path.split_view('/');
  123. if (arguments.is_empty()) {
  124. auto last_part = TRY(KString::try_create(parts.last()));
  125. if (!arguments.try_append(move(last_part)))
  126. return ENOMEM;
  127. }
  128. auto path_string = TRY(KString::try_create(path));
  129. auto name = TRY(KString::try_create(parts.last()));
  130. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  131. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  132. first_thread = nullptr;
  133. return ENOMEM;
  134. }
  135. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  136. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  137. auto setup_description = [&process, &description](int fd) {
  138. process->m_fds.m_fds_metadatas[fd].allocate();
  139. process->m_fds[fd].set(*description);
  140. };
  141. setup_description(0);
  142. setup_description(1);
  143. setup_description(2);
  144. if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
  145. dbgln("Failed to exec {}: {}", path, result);
  146. first_thread = nullptr;
  147. return result;
  148. }
  149. register_new(*process);
  150. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  151. process->ref();
  152. return process;
  153. }
  154. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  155. {
  156. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  157. if (process_or_error.is_error())
  158. return {};
  159. auto process = process_or_error.release_value();
  160. first_thread->regs().set_ip((FlatPtr)entry);
  161. #if ARCH(I386)
  162. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  163. #else
  164. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  165. #endif
  166. if (do_register == RegisterProcess::Yes)
  167. register_new(*process);
  168. SpinlockLocker lock(g_scheduler_lock);
  169. first_thread->set_affinity(affinity);
  170. first_thread->set_state(Thread::State::Runnable);
  171. return process;
  172. }
  173. void Process::protect_data()
  174. {
  175. m_protected_data_refs.unref([&]() {
  176. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  177. });
  178. }
  179. void Process::unprotect_data()
  180. {
  181. m_protected_data_refs.ref([&]() {
  182. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  183. });
  184. }
  185. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  186. {
  187. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  188. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  189. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  190. return process;
  191. }
  192. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  193. : m_name(move(name))
  194. , m_is_kernel_process(is_kernel_process)
  195. , m_executable(move(executable))
  196. , m_cwd(move(cwd))
  197. , m_tty(tty)
  198. , m_wait_blocker_set(*this)
  199. {
  200. // Ensure that we protect the process data when exiting the constructor.
  201. ProtectedDataMutationScope scope { *this };
  202. m_protected_values.pid = allocate_pid();
  203. m_protected_values.ppid = ppid;
  204. m_protected_values.uid = uid;
  205. m_protected_values.gid = gid;
  206. m_protected_values.euid = uid;
  207. m_protected_values.egid = gid;
  208. m_protected_values.suid = uid;
  209. m_protected_values.sgid = gid;
  210. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  211. }
  212. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  213. {
  214. m_space = move(preallocated_space);
  215. auto create_first_thread = [&] {
  216. if (fork_parent) {
  217. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  218. return Thread::current()->try_clone(*this);
  219. }
  220. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  221. return Thread::try_create(*this);
  222. };
  223. first_thread = TRY(create_first_thread());
  224. if (!fork_parent) {
  225. // FIXME: Figure out if this is really necessary.
  226. first_thread->detach();
  227. }
  228. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  229. return KSuccess;
  230. }
  231. Process::~Process()
  232. {
  233. unprotect_data();
  234. VERIFY(thread_count() == 0); // all threads should have been finalized
  235. VERIFY(!m_alarm_timer);
  236. PerformanceManager::add_process_exit_event(*this);
  237. }
  238. bool Process::unref() const
  239. {
  240. // NOTE: We need to obtain the process list lock before doing anything,
  241. // because otherwise someone might get in between us lowering the
  242. // refcount and acquiring the lock.
  243. auto did_hit_zero = processes().with([&](auto& list) {
  244. auto new_ref_count = deref_base();
  245. if (new_ref_count > 0)
  246. return false;
  247. if (m_list_node.is_in_list())
  248. list.remove(*const_cast<Process*>(this));
  249. return true;
  250. });
  251. if (did_hit_zero)
  252. delete this;
  253. return did_hit_zero;
  254. }
  255. // Make sure the compiler doesn't "optimize away" this function:
  256. extern void signal_trampoline_dummy() __attribute__((used));
  257. void signal_trampoline_dummy()
  258. {
  259. #if ARCH(I386)
  260. // The trampoline preserves the current eax, pushes the signal code and
  261. // then calls the signal handler. We do this because, when interrupting a
  262. // blocking syscall, that syscall may return some special error code in eax;
  263. // This error code would likely be overwritten by the signal handler, so it's
  264. // necessary to preserve it here.
  265. asm(
  266. ".intel_syntax noprefix\n"
  267. ".globl asm_signal_trampoline\n"
  268. "asm_signal_trampoline:\n"
  269. "push ebp\n"
  270. "mov ebp, esp\n"
  271. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  272. "sub esp, 4\n" // align the stack to 16 bytes
  273. "mov eax, [ebp+12]\n" // push the signal code
  274. "push eax\n"
  275. "call [ebp+8]\n" // call the signal handler
  276. "add esp, 8\n"
  277. "mov eax, %P0\n"
  278. "int 0x82\n" // sigreturn syscall
  279. ".globl asm_signal_trampoline_end\n"
  280. "asm_signal_trampoline_end:\n"
  281. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  282. #elif ARCH(X86_64)
  283. // The trampoline preserves the current rax, pushes the signal code and
  284. // then calls the signal handler. We do this because, when interrupting a
  285. // blocking syscall, that syscall may return some special error code in eax;
  286. // This error code would likely be overwritten by the signal handler, so it's
  287. // necessary to preserve it here.
  288. asm(
  289. ".intel_syntax noprefix\n"
  290. ".globl asm_signal_trampoline\n"
  291. "asm_signal_trampoline:\n"
  292. "push rbp\n"
  293. "mov rbp, rsp\n"
  294. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  295. "sub rsp, 8\n" // align the stack to 16 bytes
  296. "mov rdi, [rbp+24]\n" // push the signal code
  297. "call [rbp+16]\n" // call the signal handler
  298. "add rsp, 8\n"
  299. "mov rax, %P0\n"
  300. "int 0x82\n" // sigreturn syscall
  301. ".globl asm_signal_trampoline_end\n"
  302. "asm_signal_trampoline_end:\n"
  303. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  304. #endif
  305. }
  306. extern "C" char const asm_signal_trampoline[];
  307. extern "C" char const asm_signal_trampoline_end[];
  308. void create_signal_trampoline()
  309. {
  310. // NOTE: We leak this region.
  311. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  312. g_signal_trampoline_region->set_syscall_region(true);
  313. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  314. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  315. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  316. g_signal_trampoline_region->set_writable(false);
  317. g_signal_trampoline_region->remap();
  318. }
  319. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  320. {
  321. VERIFY(!is_dead());
  322. VERIFY(&Process::current() == this);
  323. if (out_of_memory) {
  324. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  325. } else {
  326. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  327. auto* symbol = symbolicate_kernel_address(ip);
  328. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  329. } else {
  330. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  331. }
  332. dump_backtrace();
  333. }
  334. {
  335. ProtectedDataMutationScope scope { *this };
  336. m_protected_values.termination_signal = signal;
  337. }
  338. set_should_generate_coredump(!out_of_memory);
  339. address_space().dump_regions();
  340. VERIFY(is_user_process());
  341. die();
  342. // We can not return from here, as there is nowhere
  343. // to unwind to, so die right away.
  344. Thread::current()->die_if_needed();
  345. VERIFY_NOT_REACHED();
  346. }
  347. RefPtr<Process> Process::from_pid(ProcessID pid)
  348. {
  349. return processes().with([&](const auto& list) -> RefPtr<Process> {
  350. for (auto& process : list) {
  351. if (process.pid() == pid)
  352. return &process;
  353. }
  354. return {};
  355. });
  356. }
  357. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  358. {
  359. SpinlockLocker lock(m_fds_lock);
  360. if (m_fds_metadatas.size() <= i)
  361. return nullptr;
  362. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  363. return &metadata;
  364. return nullptr;
  365. }
  366. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  367. {
  368. SpinlockLocker lock(m_fds_lock);
  369. if (m_fds_metadatas.size() <= i)
  370. return nullptr;
  371. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  372. return &metadata;
  373. return nullptr;
  374. }
  375. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  376. {
  377. SpinlockLocker lock(m_fds_lock);
  378. VERIFY(m_fds_metadatas[i].is_allocated());
  379. return m_fds_metadatas[i];
  380. }
  381. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  382. {
  383. SpinlockLocker lock(m_fds_lock);
  384. VERIFY(m_fds_metadatas[i].is_allocated());
  385. return m_fds_metadatas[i];
  386. }
  387. KResultOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  388. {
  389. SpinlockLocker lock(m_fds_lock);
  390. if (fd < 0)
  391. return EBADF;
  392. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  393. return EBADF;
  394. RefPtr description = m_fds_metadatas[fd].description();
  395. if (!description)
  396. return EBADF;
  397. return description.release_nonnull();
  398. }
  399. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  400. {
  401. SpinlockLocker lock(m_fds_lock);
  402. for (auto& file_description_metadata : m_fds_metadatas) {
  403. callback(file_description_metadata);
  404. }
  405. }
  406. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  407. {
  408. SpinlockLocker lock(m_fds_lock);
  409. for (auto& file_description_metadata : m_fds_metadatas) {
  410. callback(file_description_metadata);
  411. }
  412. }
  413. size_t Process::OpenFileDescriptions::open_count() const
  414. {
  415. size_t count = 0;
  416. enumerate([&](auto& file_description_metadata) {
  417. if (file_description_metadata.is_valid())
  418. ++count;
  419. });
  420. return count;
  421. }
  422. KResultOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  423. {
  424. SpinlockLocker lock(m_fds_lock);
  425. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  426. if (!m_fds_metadatas[i].is_allocated()) {
  427. m_fds_metadatas[i].allocate();
  428. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  429. }
  430. }
  431. return EMFILE;
  432. }
  433. Time kgettimeofday()
  434. {
  435. return TimeManagement::now();
  436. }
  437. siginfo_t Process::wait_info()
  438. {
  439. siginfo_t siginfo {};
  440. siginfo.si_signo = SIGCHLD;
  441. siginfo.si_pid = pid().value();
  442. siginfo.si_uid = uid().value();
  443. if (m_protected_values.termination_signal) {
  444. siginfo.si_status = m_protected_values.termination_signal;
  445. siginfo.si_code = CLD_KILLED;
  446. } else {
  447. siginfo.si_status = m_protected_values.termination_status;
  448. siginfo.si_code = CLD_EXITED;
  449. }
  450. return siginfo;
  451. }
  452. Custody& Process::current_directory()
  453. {
  454. if (!m_cwd)
  455. m_cwd = VirtualFileSystem::the().root_custody();
  456. return *m_cwd;
  457. }
  458. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  459. {
  460. if (path_length == 0)
  461. return EINVAL;
  462. if (path_length > PATH_MAX)
  463. return ENAMETOOLONG;
  464. return try_copy_kstring_from_user(user_path, path_length);
  465. }
  466. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  467. {
  468. Userspace<char const*> path_characters((FlatPtr)path.characters);
  469. return get_syscall_path_argument(path_characters, path.length);
  470. }
  471. bool Process::dump_core()
  472. {
  473. VERIFY(is_dumpable());
  474. VERIFY(should_generate_coredump());
  475. dbgln("Generating coredump for pid: {}", pid().value());
  476. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  477. auto coredump_or_error = Coredump::try_create(*this, coredump_path);
  478. if (coredump_or_error.is_error())
  479. return false;
  480. return !coredump_or_error.value()->write().is_error();
  481. }
  482. bool Process::dump_perfcore()
  483. {
  484. VERIFY(is_dumpable());
  485. VERIFY(m_perf_event_buffer);
  486. dbgln("Generating perfcore for pid: {}", pid().value());
  487. // Try to generate a filename which isn't already used.
  488. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  489. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  490. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  491. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  492. if (description_or_error.is_error()) {
  493. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  494. return false;
  495. }
  496. auto& description = *description_or_error.value();
  497. auto builder_or_error = KBufferBuilder::try_create();
  498. if (builder_or_error.is_error()) {
  499. dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
  500. return false;
  501. }
  502. auto builder = builder_or_error.release_value();
  503. if (m_perf_event_buffer->to_json(builder).is_error()) {
  504. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  505. return false;
  506. }
  507. auto json = builder.build();
  508. if (!json) {
  509. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  510. return false;
  511. }
  512. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  513. if (description.write(json_buffer, json->size()).is_error()) {
  514. return false;
  515. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  516. }
  517. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  518. return true;
  519. }
  520. void Process::finalize()
  521. {
  522. VERIFY(Thread::current() == g_finalizer);
  523. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  524. if (is_dumpable()) {
  525. if (m_should_generate_coredump)
  526. dump_core();
  527. if (m_perf_event_buffer) {
  528. dump_perfcore();
  529. TimeManagement::the().disable_profile_timer();
  530. }
  531. }
  532. m_threads_for_coredump.clear();
  533. if (m_alarm_timer)
  534. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  535. m_fds.clear();
  536. m_tty = nullptr;
  537. m_executable = nullptr;
  538. m_cwd = nullptr;
  539. m_arguments.clear();
  540. m_environment.clear();
  541. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  542. {
  543. // FIXME: PID/TID BUG
  544. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  545. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  546. parent_thread->send_signal(SIGCHLD, this);
  547. }
  548. }
  549. if (!!ppid()) {
  550. if (auto parent = Process::from_pid(ppid())) {
  551. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  552. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  553. }
  554. }
  555. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  556. m_space->remove_all_regions({});
  557. VERIFY(ref_count() > 0);
  558. // WaitBlockerSet::finalize will be in charge of dropping the last
  559. // reference if there are still waiters around, or whenever the last
  560. // waitable states are consumed. Unless there is no parent around
  561. // anymore, in which case we'll just drop it right away.
  562. m_wait_blocker_set.finalize();
  563. }
  564. void Process::disowned_by_waiter(Process& process)
  565. {
  566. m_wait_blocker_set.disowned_by_waiter(process);
  567. }
  568. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  569. {
  570. if (auto parent = Process::from_pid(ppid()))
  571. parent->m_wait_blocker_set.unblock(*this, flags, signal);
  572. }
  573. void Process::die()
  574. {
  575. auto expected = State::Running;
  576. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  577. // It's possible that another thread calls this at almost the same time
  578. // as we can't always instantly kill other threads (they may be blocked)
  579. // So if we already were called then other threads should stop running
  580. // momentarily and we only really need to service the first thread
  581. return;
  582. }
  583. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  584. // getting an EOF when the last process using the slave PTY dies.
  585. // If the master PTY owner relies on an EOF to know when to wait() on a
  586. // slave owner, we have to allow the PTY pair to be torn down.
  587. m_tty = nullptr;
  588. VERIFY(m_threads_for_coredump.is_empty());
  589. for_each_thread([&](auto& thread) {
  590. m_threads_for_coredump.append(thread);
  591. });
  592. processes().with([&](const auto& list) {
  593. for (auto it = list.begin(); it != list.end();) {
  594. auto& process = *it;
  595. ++it;
  596. if (process.has_tracee_thread(pid())) {
  597. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  598. process.stop_tracing();
  599. auto err = process.send_signal(SIGSTOP, this);
  600. if (err.is_error())
  601. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  602. }
  603. }
  604. });
  605. kill_all_threads();
  606. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  607. KCOVDevice::free_process();
  608. #endif
  609. }
  610. void Process::terminate_due_to_signal(u8 signal)
  611. {
  612. VERIFY_INTERRUPTS_DISABLED();
  613. VERIFY(signal < 32);
  614. VERIFY(&Process::current() == this);
  615. dbgln("Terminating {} due to signal {}", *this, signal);
  616. {
  617. ProtectedDataMutationScope scope { *this };
  618. m_protected_values.termination_status = 0;
  619. m_protected_values.termination_signal = signal;
  620. }
  621. die();
  622. }
  623. KResult Process::send_signal(u8 signal, Process* sender)
  624. {
  625. // Try to send it to the "obvious" main thread:
  626. auto receiver_thread = Thread::from_tid(pid().value());
  627. // If the main thread has died, there may still be other threads:
  628. if (!receiver_thread) {
  629. // The first one should be good enough.
  630. // Neither kill(2) nor kill(3) specify any selection precedure.
  631. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  632. receiver_thread = &thread;
  633. return IterationDecision::Break;
  634. });
  635. }
  636. if (receiver_thread) {
  637. receiver_thread->send_signal(signal, sender);
  638. return KSuccess;
  639. }
  640. return ESRCH;
  641. }
  642. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  643. {
  644. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  645. // FIXME: Do something with guard pages?
  646. auto thread_or_error = Thread::try_create(*this);
  647. if (thread_or_error.is_error())
  648. return {};
  649. auto thread = thread_or_error.release_value();
  650. thread->set_name(move(name));
  651. thread->set_affinity(affinity);
  652. thread->set_priority(priority);
  653. if (!joinable)
  654. thread->detach();
  655. auto& regs = thread->regs();
  656. regs.set_ip((FlatPtr)entry);
  657. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  658. SpinlockLocker lock(g_scheduler_lock);
  659. thread->set_state(Thread::State::Runnable);
  660. return thread;
  661. }
  662. void Process::OpenFileDescriptionAndFlags::clear()
  663. {
  664. // FIXME: Verify Process::m_fds_lock is locked!
  665. m_description = nullptr;
  666. m_flags = 0;
  667. }
  668. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  669. {
  670. // FIXME: Verify Process::m_fds_lock is locked!
  671. m_description = move(description);
  672. m_flags = flags;
  673. }
  674. void Process::set_tty(TTY* tty)
  675. {
  676. m_tty = tty;
  677. }
  678. KResult Process::start_tracing_from(ProcessID tracer)
  679. {
  680. m_tracer = TRY(ThreadTracer::try_create(tracer));
  681. return KSuccess;
  682. }
  683. void Process::stop_tracing()
  684. {
  685. m_tracer = nullptr;
  686. }
  687. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  688. {
  689. VERIFY(m_tracer.ptr());
  690. m_tracer->set_regs(regs);
  691. thread.send_urgent_signal_to_self(SIGTRAP);
  692. }
  693. bool Process::create_perf_events_buffer_if_needed()
  694. {
  695. if (!m_perf_event_buffer) {
  696. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  697. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  698. }
  699. return !!m_perf_event_buffer;
  700. }
  701. void Process::delete_perf_events_buffer()
  702. {
  703. if (m_perf_event_buffer)
  704. m_perf_event_buffer = nullptr;
  705. }
  706. bool Process::remove_thread(Thread& thread)
  707. {
  708. ProtectedDataMutationScope scope { *this };
  709. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  710. VERIFY(thread_cnt_before != 0);
  711. thread_list().with([&](auto& thread_list) {
  712. thread_list.remove(thread);
  713. });
  714. return thread_cnt_before == 1;
  715. }
  716. bool Process::add_thread(Thread& thread)
  717. {
  718. ProtectedDataMutationScope scope { *this };
  719. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  720. thread_list().with([&](auto& thread_list) {
  721. thread_list.append(thread);
  722. });
  723. return is_first;
  724. }
  725. void Process::set_dumpable(bool dumpable)
  726. {
  727. if (dumpable == m_protected_values.dumpable)
  728. return;
  729. ProtectedDataMutationScope scope { *this };
  730. m_protected_values.dumpable = dumpable;
  731. }
  732. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  733. {
  734. // Write it into the first available property slot.
  735. for (auto& slot : m_coredump_properties) {
  736. if (slot.key)
  737. continue;
  738. slot.key = move(key);
  739. slot.value = move(value);
  740. return KSuccess;
  741. }
  742. return ENOBUFS;
  743. }
  744. KResult Process::try_set_coredump_property(StringView key, StringView value)
  745. {
  746. auto key_kstring = TRY(KString::try_create(key));
  747. auto value_kstring = TRY(KString::try_create(value));
  748. return set_coredump_property(move(key_kstring), move(value_kstring));
  749. };
  750. static constexpr StringView to_string(Pledge promise)
  751. {
  752. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  753. case Pledge::x: \
  754. return #x;
  755. switch (promise) {
  756. ENUMERATE_PLEDGE_PROMISES
  757. }
  758. #undef __ENUMERATE_PLEDGE_PROMISE
  759. VERIFY_NOT_REACHED();
  760. }
  761. void Process::require_no_promises()
  762. {
  763. if (!has_promises())
  764. return;
  765. dbgln("Has made a promise");
  766. Process::current().crash(SIGABRT, 0);
  767. VERIFY_NOT_REACHED();
  768. }
  769. void Process::require_promise(Pledge promise)
  770. {
  771. if (!has_promises())
  772. return;
  773. if (has_promised(promise))
  774. return;
  775. dbgln("Has not pledged {}", to_string(promise));
  776. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  777. crash(SIGABRT, 0);
  778. }
  779. }