test-math.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/TestSuite.h>
  27. #include <float.h>
  28. #include <math.h>
  29. TEST_CASE(trig)
  30. {
  31. EXPECT_APPROXIMATE(sin(1234), 0.601927);
  32. EXPECT_APPROXIMATE(cos(1234), -0.798550);
  33. EXPECT_APPROXIMATE(tan(1234), -0.753775);
  34. EXPECT_APPROXIMATE(sqrt(1234), 35.128336);
  35. EXPECT_APPROXIMATE(sin(-1), -0.8414709848078965);
  36. EXPECT_APPROXIMATE(cos(-1), 0.5403023058681398);
  37. EXPECT_APPROXIMATE(tan(-1), -1.5574077246549023);
  38. EXPECT(isnan(sqrt(-1)));
  39. EXPECT(isnan(asin(1.1)));
  40. EXPECT(isnan(asin(-1.1)));
  41. EXPECT_APPROXIMATE(asin(0), 0.0);
  42. EXPECT_APPROXIMATE(asin(0.01), 0.01);
  43. EXPECT_APPROXIMATE(asin(0.1), 0.100167);
  44. EXPECT_APPROXIMATE(asin(0.3), 0.304693);
  45. EXPECT_APPROXIMATE(asin(0.499), 0.522444);
  46. EXPECT_APPROXIMATE(asin(0.5), 0.523599);
  47. EXPECT_APPROXIMATE(asin(0.501), 0.524754);
  48. EXPECT_APPROXIMATE(asin(0.9), 1.119770);
  49. EXPECT_APPROXIMATE(asin(0.99), 1.429245);
  50. EXPECT_APPROXIMATE(asin(1.0), 1.570750);
  51. EXPECT_APPROXIMATE(atan(0), 0.0);
  52. EXPECT_APPROXIMATE(atan(0.5), 0.463648);
  53. EXPECT_APPROXIMATE(atan(-0.5), -0.463648);
  54. EXPECT_APPROXIMATE(atan(5.5), 1.390943);
  55. EXPECT_APPROXIMATE(atan(-5.5), -1.390943);
  56. EXPECT_APPROXIMATE(atan(555.5), 1.568996);
  57. }
  58. TEST_CASE(other)
  59. {
  60. EXPECT_EQ(trunc(9999999999999.5), 9999999999999.0);
  61. EXPECT_EQ(trunc(-9999999999999.5), -9999999999999.0);
  62. }
  63. TEST_CASE(exponents)
  64. {
  65. struct values {
  66. double x;
  67. double exp;
  68. double sinh;
  69. double cosh;
  70. double tanh;
  71. };
  72. values values[8] {
  73. { 1.500000, 4.481626, 2.129246, 2.352379, 0.905148 },
  74. { 20.990000, 1304956710.432035, 652478355.216017, 652478355.216017, 1.000000 },
  75. { 20.010000, 490041186.687082, 245020593.343541, 245020593.343541, 1.000000 },
  76. { 0.000000, 1.000000, 0.000000, 1.000000, 0.000000 },
  77. { 0.010000, 1.010050, 0.010000, 1.000050, 0.010000 },
  78. { -0.010000, 0.990050, -0.010000, 1.000050, -0.010000 },
  79. { -1.000000, 0.367879, -1.175201, 1.543081, -0.761594 },
  80. { -17.000000, 0.000000, -12077476.376788, 12077476.376788, -1.000000 },
  81. };
  82. for (auto& v : values) {
  83. EXPECT_APPROXIMATE(exp(v.x), v.exp);
  84. EXPECT_APPROXIMATE(sinh(v.x), v.sinh);
  85. EXPECT_APPROXIMATE(cosh(v.x), v.cosh);
  86. EXPECT_APPROXIMATE(tanh(v.x), v.tanh);
  87. }
  88. EXPECT_EQ(exp(1000), __builtin_huge_val());
  89. }
  90. TEST_CASE(logarithms)
  91. {
  92. EXPECT(isnan(log(-1)));
  93. EXPECT(log(0) < -1000000);
  94. EXPECT_APPROXIMATE(log(0.5), -0.693233);
  95. EXPECT_APPROXIMATE(log(1.1), 0.095310);
  96. EXPECT_APPROXIMATE(log(5), 1.609480);
  97. EXPECT_APPROXIMATE(log(5.5), 1.704842);
  98. EXPECT_APPROXIMATE(log(500), 6.214104);
  99. EXPECT_APPROXIMATE(log2(5), 2.321989);
  100. EXPECT_APPROXIMATE(log10(5), 0.698988);
  101. }
  102. union Extractor {
  103. explicit Extractor(double d)
  104. : d(d)
  105. {
  106. }
  107. Extractor(unsigned sign, unsigned exponent, unsigned long long mantissa)
  108. : mantissa(mantissa)
  109. , exponent(exponent)
  110. , sign(sign)
  111. {
  112. }
  113. struct {
  114. unsigned long long mantissa : 52;
  115. unsigned exponent : 11;
  116. unsigned sign : 1;
  117. };
  118. double d;
  119. bool operator==(const Extractor& other) const
  120. {
  121. return other.sign == sign && other.exponent == exponent && other.mantissa == mantissa;
  122. }
  123. };
  124. namespace AK {
  125. template<>
  126. struct Formatter<Extractor> : StandardFormatter {
  127. void format(FormatBuilder& builder, const Extractor& value)
  128. {
  129. builder.put_literal("{");
  130. builder.put_u64(value.sign);
  131. builder.put_literal(", ");
  132. builder.put_u64(value.exponent, 16, true);
  133. builder.put_literal(", ");
  134. builder.put_u64(value.mantissa, 16, true);
  135. builder.put_literal("}");
  136. }
  137. };
  138. }
  139. static Extractor nextafter_translator(Extractor x, Extractor target)
  140. {
  141. return Extractor(nextafter(x.d, target.d));
  142. }
  143. TEST_CASE(nextafter)
  144. {
  145. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xfffffffffffff));
  146. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x1, 0x0), Extractor(0x0, 0x412, 0xe848000000000)), Extractor(0x0, 0x1, 0x1));
  147. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x3ff, 0x0), Extractor(0x0, 0x412, 0xe848200000000)), Extractor(0x0, 0x3ff, 0x1));
  148. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x0), Extractor(0x0, 0x412, 0xe848000000000)), Extractor(0x0, 0x0, 0x1));
  149. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x0), Extractor(0x0, 0x412, 0xe848000000000)), Extractor(0x0, 0x0, 0x1));
  150. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x3ff, 0x0), Extractor(0x0, 0x412, 0xe847e00000000)), Extractor(0x1, 0x3fe, 0xfffffffffffff));
  151. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x1), Extractor(0x0, 0x412, 0xe848000000000)), Extractor(0x0, 0x0, 0x2));
  152. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xfffffffffffff));
  153. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe848000000000), Extractor(0x0, 0x1, 0x0)), Extractor(0x0, 0x412, 0xe847fffffffff));
  154. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe848200000000), Extractor(0x0, 0x3ff, 0x0)), Extractor(0x0, 0x412, 0xe8481ffffffff));
  155. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe848000000000), Extractor(0x1, 0x0, 0x0)), Extractor(0x0, 0x412, 0xe847fffffffff));
  156. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe848000000000), Extractor(0x0, 0x0, 0x0)), Extractor(0x0, 0x412, 0xe847fffffffff));
  157. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe847e00000000), Extractor(0x1, 0x3ff, 0x0)), Extractor(0x0, 0x412, 0xe847dffffffff));
  158. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x412, 0xe848000000000), Extractor(0x0, 0x0, 0x1)), Extractor(0x0, 0x412, 0xe847fffffffff));
  159. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xfffffffffffff));
  160. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x1, 0x0), Extractor(0x0, 0x1, 0x0)), Extractor(0x0, 0x1, 0x0));
  161. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x3ff, 0x0), Extractor(0x0, 0x3ff, 0x0)), Extractor(0x0, 0x3ff, 0x0));
  162. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x0), Extractor(0x1, 0x0, 0x0)), Extractor(0x1, 0x0, 0x0));
  163. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x0), Extractor(0x0, 0x0, 0x0)), Extractor(0x0, 0x0, 0x0));
  164. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x3ff, 0x0), Extractor(0x1, 0x3ff, 0x0)), Extractor(0x1, 0x3ff, 0x0));
  165. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x1), Extractor(0x0, 0x0, 0x1)), Extractor(0x0, 0x0, 0x1));
  166. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x1, 0x7fe, 0xffffffffffffe));
  167. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x1, 0x0), Extractor(0x0, 0x1, 0x0)), Extractor(0x1, 0x0, 0xfffffffffffff));
  168. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x3ff, 0x0), Extractor(0x0, 0x3ff, 0x0)), Extractor(0x1, 0x3fe, 0xfffffffffffff));
  169. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x0), Extractor(0x1, 0x0, 0x0)), Extractor(0x1, 0x0, 0x0));
  170. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x0), Extractor(0x0, 0x0, 0x0)), Extractor(0x0, 0x0, 0x0));
  171. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x3ff, 0x0), Extractor(0x1, 0x3ff, 0x0)), Extractor(0x0, 0x3fe, 0xfffffffffffff));
  172. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x1), Extractor(0x0, 0x0, 0x1)), Extractor(0x1, 0x0, 0x0));
  173. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x1, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xffffffffffffe));
  174. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x1, 0x0), Extractor(0x1, 0x1, 0x0)), Extractor(0x0, 0x0, 0xfffffffffffff));
  175. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x3ff, 0x0), Extractor(0x1, 0x3ff, 0x0)), Extractor(0x0, 0x3fe, 0xfffffffffffff));
  176. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x0), Extractor(0x0, 0x0, 0x0)), Extractor(0x0, 0x0, 0x0));
  177. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x0), Extractor(0x1, 0x0, 0x0)), Extractor(0x1, 0x0, 0x0));
  178. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x3ff, 0x0), Extractor(0x0, 0x3ff, 0x0)), Extractor(0x1, 0x3fe, 0xfffffffffffff));
  179. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x1), Extractor(0x1, 0x0, 0x1)), Extractor(0x0, 0x0, 0x0));
  180. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xfffffffffffff));
  181. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x1, 0x0), Extractor(0x1, 0x419, 0x7d78400000000)), Extractor(0x0, 0x0, 0xfffffffffffff));
  182. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x3ff, 0x0), Extractor(0x1, 0x419, 0x7d783fc000000)), Extractor(0x0, 0x3fe, 0xfffffffffffff));
  183. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x0, 0x0), Extractor(0x1, 0x419, 0x7d78400000000)), Extractor(0x1, 0x0, 0x1));
  184. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x0), Extractor(0x1, 0x419, 0x7d78400000000)), Extractor(0x1, 0x0, 0x1));
  185. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x3ff, 0x0), Extractor(0x1, 0x419, 0x7d78404000000)), Extractor(0x1, 0x3ff, 0x1));
  186. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x0, 0x1), Extractor(0x1, 0x419, 0x7d78400000000)), Extractor(0x0, 0x0, 0x0));
  187. EXPECT_EQ(nextafter_translator(Extractor(0x0, 0x7fe, 0xfffffffffffff), Extractor(0x0, 0x7fe, 0xfffffffffffff)), Extractor(0x0, 0x7fe, 0xfffffffffffff));
  188. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d78400000000), Extractor(0x0, 0x1, 0x0)), Extractor(0x1, 0x419, 0x7d783ffffffff));
  189. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d783fc000000), Extractor(0x0, 0x3ff, 0x0)), Extractor(0x1, 0x419, 0x7d783fbffffff));
  190. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d78400000000), Extractor(0x1, 0x0, 0x0)), Extractor(0x1, 0x419, 0x7d783ffffffff));
  191. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d78400000000), Extractor(0x0, 0x0, 0x0)), Extractor(0x1, 0x419, 0x7d783ffffffff));
  192. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d78404000000), Extractor(0x1, 0x3ff, 0x0)), Extractor(0x1, 0x419, 0x7d78403ffffff));
  193. EXPECT_EQ(nextafter_translator(Extractor(0x1, 0x419, 0x7d78400000000), Extractor(0x0, 0x0, 0x1)), Extractor(0x1, 0x419, 0x7d783ffffffff));
  194. }
  195. TEST_CASE(scalbn)
  196. {
  197. EXPECT(isnan(scalbn(NAN, 3)));
  198. EXPECT(!isfinite(scalbn(INFINITY, 5)));
  199. EXPECT_EQ(scalbn(0, 3), 0);
  200. EXPECT_EQ(scalbn(15.3, 0), 15.3);
  201. EXPECT_EQ(scalbn(0x0.0000000000008p-1022, 16), 0x0.0000000000008p-1006);
  202. static constexpr auto biggest_subnormal = DBL_MIN - DBL_TRUE_MIN;
  203. auto smallest_normal = scalbn(biggest_subnormal, 1);
  204. Extractor ex(smallest_normal);
  205. EXPECT(ex.exponent != 0);
  206. EXPECT_EQ(scalbn(2.0, 4), 32.0);
  207. }
  208. TEST_CASE(gamma)
  209. {
  210. EXPECT(isinf(tgamma(+0.0)) && !signbit(tgamma(+0.0)));
  211. EXPECT(isinf(tgamma(-0.0)) && signbit(tgamma(-0.0)));
  212. EXPECT(isinf(tgamma(INFINITY)) && !signbit(tgamma(INFINITY)));
  213. EXPECT(isnan(tgamma(NAN)));
  214. EXPECT(isnan(tgamma(-INFINITY)));
  215. EXPECT(isnan(tgamma(-5)));
  216. EXPECT_APPROXIMATE(tgamma(0.5), sqrt(M_PI));
  217. EXPECT_EQ(tgammal(21.0l), 2'432'902'008'176'640'000.0l);
  218. EXPECT_EQ(tgamma(19.0), 6'402'373'705'728'000.0);
  219. EXPECT_EQ(tgammaf(11.0f), 3628800.0f);
  220. EXPECT_EQ(tgamma(4.0), 6);
  221. EXPECT_EQ(lgamma(1.0), 0.0);
  222. EXPECT_EQ(lgamma(2.0), 0.0);
  223. EXPECT(isinf(lgamma(0.0)));
  224. EXPECT(!signbit(lgamma(-0.0)));
  225. EXPECT(isnan(lgamma(NAN)));
  226. EXPECT(isinf(lgamma(INFINITY)));
  227. EXPECT(isinf(lgamma(-INFINITY)));
  228. EXPECT_EQ(signgam, 1);
  229. lgamma(-2.5);
  230. EXPECT_EQ(signgam, -1);
  231. }
  232. TEST_CASE(fmax_and_fmin)
  233. {
  234. EXPECT(fmax(-INFINITY, 0) == 0);
  235. EXPECT(fmax(NAN, 12) == 12);
  236. EXPECT(fmax(5, NAN) == 5);
  237. EXPECT(isnan(fmax(NAN, NAN)));
  238. EXPECT(isinf(fmax(1'000'000, INFINITY)));
  239. EXPECT(isinf(fmin(-INFINITY, 0)));
  240. EXPECT(fmin(0, INFINITY) == 0);
  241. EXPECT(fmin(NAN, 5) == 5);
  242. EXPECT(fmin(0, NAN) == 0);
  243. EXPECT(isnan(fmin(NAN, NAN)));
  244. }
  245. TEST_MAIN(Math)