12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427 |
- /*
- * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
- * Copyright (c) 2021, Mițca Dumitru <dumitru0mitca@gmail.com>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <AK/Platform.h>
- #include <AK/StdLibExtras.h>
- #include <LibC/assert.h>
- #include <fenv.h>
- #include <math.h>
- #include <stdint.h>
- #include <stdlib.h>
- template<size_t>
- constexpr double e_to_power();
- template<>
- constexpr double e_to_power<0>() { return 1; }
- template<size_t exponent>
- constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
- template<size_t>
- constexpr size_t factorial();
- template<>
- constexpr size_t factorial<0>() { return 1; }
- template<size_t value>
- constexpr size_t factorial() { return value * factorial<value - 1>(); }
- template<size_t>
- constexpr size_t product_even();
- template<>
- constexpr size_t product_even<2>() { return 2; }
- template<size_t value>
- constexpr size_t product_even() { return value * product_even<value - 2>(); }
- template<size_t>
- constexpr size_t product_odd();
- template<>
- constexpr size_t product_odd<1>() { return 1; }
- template<size_t value>
- constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
- enum class RoundingMode {
- ToZero = FE_TOWARDZERO,
- Up = FE_UPWARD,
- Down = FE_DOWNWARD,
- ToEven = FE_TONEAREST
- };
- template<typename T>
- union FloatExtractor;
- #if ARCH(I386) || ARCH(X86_64)
- // This assumes long double is 80 bits, which is true with GCC on Intel platforms
- template<>
- union FloatExtractor<long double> {
- static const int mantissa_bits = 64;
- static const unsigned long long mantissa_max = ~0u;
- static const int exponent_bias = 16383;
- static const int exponent_bits = 15;
- static const unsigned exponent_max = 32767;
- struct {
- unsigned long long mantissa;
- unsigned exponent : 15;
- unsigned sign : 1;
- };
- long double d;
- };
- #endif
- template<>
- union FloatExtractor<double> {
- static const int mantissa_bits = 52;
- static const unsigned long long mantissa_max = (1ull << 52) - 1;
- static const int exponent_bias = 1023;
- static const int exponent_bits = 11;
- static const unsigned exponent_max = 2047;
- struct {
- unsigned long long mantissa : 52;
- unsigned exponent : 11;
- unsigned sign : 1;
- };
- double d;
- };
- template<>
- union FloatExtractor<float> {
- static const int mantissa_bits = 23;
- static const unsigned mantissa_max = (1 << 23) - 1;
- static const int exponent_bias = 127;
- static const int exponent_bits = 8;
- static const unsigned exponent_max = 255;
- struct {
- unsigned long long mantissa : 23;
- unsigned exponent : 8;
- unsigned sign : 1;
- };
- float d;
- };
- // This is much branchier than it really needs to be
- template<typename FloatType>
- static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
- {
- if (!isfinite(x))
- return x;
- using Extractor = FloatExtractor<decltype(x)>;
- Extractor extractor;
- extractor.d = x;
- auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
- bool round = false;
- bool guard = false;
- if (unbiased_exponent < 0) {
- // it was easier to special case [0..1) as it saves us from
- // handling subnormals, underflows, etc
- if (unbiased_exponent == -1) {
- round = true;
- }
- guard = extractor.mantissa != 0;
- extractor.mantissa = 0;
- extractor.exponent = 0;
- } else {
- if (unbiased_exponent >= Extractor::mantissa_bits)
- return x;
- auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
- auto dead_mask = (1ull << dead_bitcount) - 1;
- auto dead_bits = extractor.mantissa & dead_mask;
- extractor.mantissa &= ~dead_mask;
- auto guard_mask = dead_mask >> 1;
- guard = (dead_bits & guard_mask) != 0;
- round = (dead_bits & ~guard_mask) != 0;
- }
- bool should_round = false;
- switch (rounding_mode) {
- case RoundingMode::ToEven:
- should_round = round;
- break;
- case RoundingMode::Up:
- if (!extractor.sign)
- should_round = guard || round;
- break;
- case RoundingMode::Down:
- if (extractor.sign)
- should_round = guard || round;
- break;
- case RoundingMode::ToZero:
- break;
- }
- if (should_round) {
- // We could do this ourselves, but this saves us from manually
- // handling overflow.
- if (extractor.sign)
- extractor.d -= 1.0;
- else
- extractor.d += 1.0;
- }
- return extractor.d;
- }
- // This is much branchier than it really needs to be
- template<typename FloatType>
- static FloatType internal_nextafter(FloatType x, bool up)
- {
- if (!isfinite(x))
- return x;
- using Extractor = FloatExtractor<decltype(x)>;
- Extractor extractor;
- extractor.d = x;
- if (x == 0) {
- if (!extractor.sign) {
- extractor.mantissa = 1;
- extractor.sign = !up;
- return extractor.d;
- }
- if (up) {
- extractor.sign = false;
- extractor.mantissa = 1;
- return extractor.d;
- }
- extractor.mantissa = 1;
- extractor.sign = up != extractor.sign;
- return extractor.d;
- }
- if (up != extractor.sign) {
- extractor.mantissa++;
- if (!extractor.mantissa) {
- // no need to normalize the mantissa as we just hit a power
- // of two.
- extractor.exponent++;
- if (extractor.exponent == Extractor::exponent_max) {
- extractor.exponent = Extractor::exponent_max - 1;
- extractor.mantissa = Extractor::mantissa_max;
- }
- }
- return extractor.d;
- }
- if (!extractor.mantissa) {
- if (extractor.exponent) {
- extractor.exponent--;
- extractor.mantissa = Extractor::mantissa_max;
- } else {
- extractor.d = 0;
- }
- return extractor.d;
- }
- extractor.mantissa--;
- if (extractor.mantissa != Extractor::mantissa_max)
- return extractor.d;
- if (extractor.exponent) {
- extractor.exponent--;
- // normalize
- extractor.mantissa <<= 1;
- } else {
- if (extractor.sign) {
- // Negative infinity
- extractor.mantissa = 0;
- extractor.exponent = Extractor::exponent_max;
- }
- }
- return extractor.d;
- }
- template<typename FloatT>
- static int internal_ilogb(FloatT x) NOEXCEPT
- {
- if (x == 0)
- return FP_ILOGB0;
- if (isnan(x))
- return FP_ILOGNAN;
- if (!isfinite(x))
- return INT_MAX;
- using Extractor = FloatExtractor<FloatT>;
- Extractor extractor;
- extractor.d = x;
- return (int)extractor.exponent - Extractor::exponent_bias;
- }
- template<typename FloatT>
- static FloatT internal_modf(FloatT x, FloatT* intpart) NOEXCEPT
- {
- FloatT integer_part = internal_to_integer(x, RoundingMode::ToZero);
- *intpart = integer_part;
- auto fraction = x - integer_part;
- if (signbit(fraction) != signbit(x))
- fraction = -fraction;
- return fraction;
- }
- template<typename FloatT>
- static FloatT internal_scalbn(FloatT x, int exponent) NOEXCEPT
- {
- if (x == 0 || !isfinite(x) || isnan(x) || exponent == 0)
- return x;
- using Extractor = FloatExtractor<FloatT>;
- Extractor extractor;
- extractor.d = x;
- if (extractor.exponent != 0) {
- extractor.exponent = clamp((int)extractor.exponent + exponent, 0, (int)Extractor::exponent_max);
- return extractor.d;
- }
- unsigned leading_mantissa_zeroes = extractor.mantissa == 0 ? 32 : __builtin_clz(extractor.mantissa);
- int shift = min((int)leading_mantissa_zeroes, exponent);
- exponent = max(exponent - shift, 0);
- extractor.exponent <<= shift;
- extractor.exponent = exponent + 1;
- return extractor.d;
- }
- template<typename FloatT>
- static FloatT internal_copysign(FloatT x, FloatT y) NOEXCEPT
- {
- using Extractor = FloatExtractor<FloatT>;
- Extractor ex, ey;
- ex.d = x;
- ey.d = y;
- ex.sign = ey.sign;
- return ex.d;
- }
- template<typename FloatT>
- static FloatT internal_gamma(FloatT x) NOEXCEPT
- {
- if (isnan(x))
- return (FloatT)NAN;
- if (x == (FloatT)0.0)
- return signbit(x) ? (FloatT)-INFINITY : (FloatT)INFINITY;
- if (x < (FloatT)0 && (rintl(x) == x || isinf(x)))
- return (FloatT)NAN;
- if (isinf(x))
- return (FloatT)INFINITY;
- using Extractor = FloatExtractor<FloatT>;
- // These constants were obtained through use of WolframAlpha
- constexpr long long max_integer_whose_factorial_fits = (Extractor::mantissa_bits == FloatExtractor<long double>::mantissa_bits ? 20 : (Extractor::mantissa_bits == FloatExtractor<double>::mantissa_bits ? 18 : (Extractor::mantissa_bits == FloatExtractor<float>::mantissa_bits ? 10 : 0)));
- static_assert(max_integer_whose_factorial_fits != 0, "internal_gamma needs to be aware of the integer factorial that fits in this floating point type.");
- if (rintl(x) == (long double)x && x <= max_integer_whose_factorial_fits) {
- long long result = 1;
- for (long long cursor = 1; cursor <= min(max_integer_whose_factorial_fits, (long long)x); cursor++)
- result *= cursor;
- return (FloatT)result;
- }
- // Stirling approximation
- return sqrtl(2.0 * M_PI / x) * powl(x / M_E, x);
- }
- extern "C" {
- float nanf(const char* s) NOEXCEPT
- {
- return __builtin_nanf(s);
- }
- double nan(const char* s) NOEXCEPT
- {
- return __builtin_nan(s);
- }
- long double nanl(const char* s) NOEXCEPT
- {
- return __builtin_nanl(s);
- }
- double trunc(double x) NOEXCEPT
- {
- return internal_to_integer(x, RoundingMode::ToZero);
- }
- float truncf(float x) NOEXCEPT
- {
- return internal_to_integer(x, RoundingMode::ToZero);
- }
- long double truncl(long double x) NOEXCEPT
- {
- return internal_to_integer(x, RoundingMode::ToZero);
- }
- long double cosl(long double angle) NOEXCEPT
- {
- return sinl(angle + M_PI_2);
- }
- double cos(double angle) NOEXCEPT
- {
- return sin(angle + M_PI_2);
- }
- float cosf(float angle) NOEXCEPT
- {
- return sinf(angle + M_PI_2);
- }
- long double sinl(long double angle) NOEXCEPT
- {
- long double ret = 0.0;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- // This can also be done with a taylor expansion, but for
- // now this works pretty well (and doesn't mess anything up
- // in quake in particular, which is very Floating-Point precision
- // heavy)
- double sin(double angle) NOEXCEPT
- {
- double ret = 0.0;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- float sinf(float angle) NOEXCEPT
- {
- float ret = 0.0f;
- __asm__(
- "fsin"
- : "=t"(ret)
- : "0"(angle));
- return ret;
- }
- long double powl(long double x, long double y) NOEXCEPT
- {
- // FIXME: Please fix me. I am naive.
- if (isnan(y))
- return y;
- if (y == 0)
- return 1;
- if (x == 0)
- return 0;
- if (y == 1)
- return x;
- int y_as_int = (int)y;
- if (y == (long double)y_as_int) {
- long double result = x;
- for (int i = 0; i < fabsl(y) - 1; ++i)
- result *= x;
- if (y < 0)
- result = 1.0l / result;
- return result;
- }
- return exp2l(y * log2l(x));
- }
- double pow(double x, double y) NOEXCEPT
- {
- return (double)powl(x, y);
- }
- float powf(float x, float y) NOEXCEPT
- {
- return (float)powl(x, y);
- }
- // On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn
- long double ldexpl(long double x, int exp) NOEXCEPT
- {
- return internal_scalbn(x, exp);
- }
- double ldexp(double x, int exp) NOEXCEPT
- {
- return internal_scalbn(x, exp);
- }
- float ldexpf(float x, int exp) NOEXCEPT
- {
- return internal_scalbn(x, exp);
- }
- long double tanhl(long double x) NOEXCEPT
- {
- if (x > 0) {
- long double exponentiated = expl(2 * x);
- return (exponentiated - 1) / (exponentiated + 1);
- }
- long double plusX = expl(x);
- long double minusX = 1 / plusX;
- return (plusX - minusX) / (plusX + minusX);
- }
- double tanh(double x) NOEXCEPT
- {
- return (double)tanhl(x);
- }
- float tanhf(float x) NOEXCEPT
- {
- return (float)tanhl(x);
- }
- static long double ampsin(long double angle) NOEXCEPT
- {
- long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI;
- long double looped_angle_squared = looped_angle * looped_angle;
- long double quadratic_term;
- if (looped_angle > 0) {
- quadratic_term = -looped_angle_squared;
- } else {
- quadratic_term = looped_angle_squared;
- }
- long double linear_term = M_PI * looped_angle;
- return quadratic_term + linear_term;
- }
- long double tanl(long double angle) NOEXCEPT
- {
- return ampsin(angle) / ampsin(M_PI_2 + angle);
- }
- double tan(double angle) NOEXCEPT
- {
- return (double)tanl(angle);
- }
- float tanf(float angle) NOEXCEPT
- {
- return (float)tanl(angle);
- }
- long double sqrtl(long double x) NOEXCEPT
- {
- long double res;
- asm("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- double sqrt(double x) NOEXCEPT
- {
- double res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- float sqrtf(float x) NOEXCEPT
- {
- float res;
- __asm__("fsqrt"
- : "=t"(res)
- : "0"(x));
- return res;
- }
- long double sinhl(long double x) NOEXCEPT
- {
- long double exponentiated = expl(x);
- if (x > 0)
- return (exponentiated * exponentiated - 1) / 2 / exponentiated;
- return (exponentiated - 1 / exponentiated) / 2;
- }
- double sinh(double x) NOEXCEPT
- {
- return (double)sinhl(x);
- }
- float sinhf(float x) NOEXCEPT
- {
- return (float)sinhl(x);
- }
- long double log10l(long double x) NOEXCEPT
- {
- long double ret = 0.0l;
- __asm__(
- "fldlg2\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- double log10(double x) NOEXCEPT
- {
- return (double)log10l(x);
- }
- float log10f(float x) NOEXCEPT
- {
- return (float)log10l(x);
- }
- long double logl(long double x) NOEXCEPT
- {
- long double ret = 0.0l;
- asm(
- "fldln2\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- double log(double x) NOEXCEPT
- {
- return (double)logl(x);
- }
- float logf(float x) NOEXCEPT
- {
- return (float)logl(x);
- }
- long double fmodl(long double index, long double period) NOEXCEPT
- {
- return index - truncl(index / period) * period;
- }
- double fmod(double index, double period) NOEXCEPT
- {
- return index - trunc(index / period) * period;
- }
- float fmodf(float index, float period) NOEXCEPT
- {
- return index - trunc(index / period) * period;
- }
- // FIXME: These aren't exactly like fmod, but these definitions are probably good enough for now
- long double remainderl(long double x, long double y) NOEXCEPT
- {
- return fmodl(x, y);
- }
- double remainder(double x, double y) NOEXCEPT
- {
- return fmod(x, y);
- }
- float remainderf(float x, float y) NOEXCEPT
- {
- return fmodf(x, y);
- }
- long double expl(long double exponent) NOEXCEPT
- {
- long double res = 0;
- asm("fldl2e\n"
- "fmulp\n"
- "fld1\n"
- "fld %%st(1)\n"
- "fprem\n"
- "f2xm1\n"
- "faddp\n"
- "fscale\n"
- "fstp %%st(1)"
- : "=t"(res)
- : "0"(exponent));
- return res;
- }
- double exp(double exponent) NOEXCEPT
- {
- return (double)expl(exponent);
- }
- float expf(float exponent) NOEXCEPT
- {
- return (float)expl(exponent);
- }
- long double exp2l(long double exponent) NOEXCEPT
- {
- long double res = 0;
- asm("fld1\n"
- "fld %%st(1)\n"
- "fprem\n"
- "f2xm1\n"
- "faddp\n"
- "fscale\n"
- "fstp %%st(1)"
- : "=t"(res)
- : "0"(exponent));
- return res;
- }
- double exp2(double exponent) NOEXCEPT
- {
- return (double)exp2l(exponent);
- }
- float exp2f(float exponent) NOEXCEPT
- {
- return (float)exp2l(exponent);
- }
- long double coshl(long double x) NOEXCEPT
- {
- long double exponentiated = expl(-x);
- if (x < 0)
- return (1 + exponentiated * exponentiated) / 2 / exponentiated;
- return (1 / exponentiated + exponentiated) / 2;
- }
- double cosh(double x) NOEXCEPT
- {
- return (double)coshl(x);
- }
- float coshf(float x) NOEXCEPT
- {
- return (float)coshl(x);
- }
- long double atan2l(long double y, long double x) NOEXCEPT
- {
- if (x > 0)
- return atanl(y / x);
- if (x == 0) {
- if (y > 0)
- return M_PI_2;
- if (y < 0)
- return -M_PI_2;
- return 0;
- }
- if (y >= 0)
- return atanl(y / x) + M_PI;
- return atanl(y / x) - M_PI;
- }
- double atan2(double y, double x) NOEXCEPT
- {
- return (double)atan2l(y, x);
- }
- float atan2f(float y, float x) NOEXCEPT
- {
- return (float)atan2l(y, x);
- }
- long double atanl(long double x) NOEXCEPT
- {
- if (x < 0)
- return -atanl(-x);
- if (x > 1)
- return M_PI_2 - atanl(1 / x);
- long double squared = x * x;
- return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
- }
- double atan(double x) NOEXCEPT
- {
- return (double)atanl(x);
- }
- float atanf(float x) NOEXCEPT
- {
- return (float)atanl(x);
- }
- long double asinl(long double x) NOEXCEPT
- {
- if (x > 1 || x < -1)
- return NAN;
- if (x > 0.5 || x < -0.5)
- return 2 * atanl(x / (1 + sqrtl(1 - x * x)));
- long double squared = x * x;
- long double value = x;
- long double i = x * squared;
- value += i * product_odd<1>() / product_even<2>() / 3;
- i *= squared;
- value += i * product_odd<3>() / product_even<4>() / 5;
- i *= squared;
- value += i * product_odd<5>() / product_even<6>() / 7;
- i *= squared;
- value += i * product_odd<7>() / product_even<8>() / 9;
- i *= squared;
- value += i * product_odd<9>() / product_even<10>() / 11;
- i *= squared;
- value += i * product_odd<11>() / product_even<12>() / 13;
- return value;
- }
- double asin(double x) NOEXCEPT
- {
- return (double)asinl(x);
- }
- float asinf(float x) NOEXCEPT
- {
- return (float)asinl(x);
- }
- long double acosl(long double x) NOEXCEPT
- {
- return M_PI_2 - asinl(x);
- }
- double acos(double x) NOEXCEPT
- {
- return M_PI_2 - asin(x);
- }
- float acosf(float x) NOEXCEPT
- {
- return M_PI_2 - asinf(x);
- }
- long double fabsl(long double value) NOEXCEPT
- {
- return value < 0 ? -value : value;
- }
- double fabs(double value) NOEXCEPT
- {
- return value < 0 ? -value : value;
- }
- float fabsf(float value) NOEXCEPT
- {
- return value < 0 ? -value : value;
- }
- int ilogbl(long double x) NOEXCEPT
- {
- return internal_ilogb(x);
- }
- int ilogb(double x) NOEXCEPT
- {
- return internal_ilogb(x);
- }
- int ilogbf(float x) NOEXCEPT
- {
- return internal_ilogb(x);
- }
- long double logbl(long double x) NOEXCEPT
- {
- return ilogbl(x);
- }
- double logb(double x) NOEXCEPT
- {
- return ilogb(x);
- }
- float logbf(float x) NOEXCEPT
- {
- return ilogbf(x);
- }
- long double log2l(long double x) NOEXCEPT
- {
- long double ret = 0.0;
- asm(
- "fld1\n"
- "fld %%st(1)\n"
- "fyl2x\n"
- "fstp %%st(1)"
- : "=t"(ret)
- : "0"(x));
- return ret;
- }
- double log2(double x) NOEXCEPT
- {
- return (double)log2l(x);
- }
- float log2f(float x) NOEXCEPT
- {
- return (float)log2l(x);
- }
- double frexp(double x, int* exp) NOEXCEPT
- {
- *exp = (x == 0) ? 0 : (1 + ilogb(x));
- return scalbn(x, -(*exp));
- }
- float frexpf(float x, int* exp) NOEXCEPT
- {
- *exp = (x == 0) ? 0 : (1 + ilogbf(x));
- return scalbnf(x, -(*exp));
- }
- long double frexpl(long double x, int* exp) NOEXCEPT
- {
- *exp = (x == 0) ? 0 : (1 + ilogbl(x));
- return scalbnl(x, -(*exp));
- }
- double round(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- float roundf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long double roundl(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long lroundf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long lround(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long lroundl(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long long llroundf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long long llround(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- long long llroundd(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::ToEven);
- }
- float floorf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Down);
- }
- double floor(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Down);
- }
- long double floorl(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Down);
- }
- long double rintl(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode { fegetround() });
- }
- double rint(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode { fegetround() });
- }
- float rintf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode { fegetround() });
- }
- long lrintl(long double value) NOEXCEPT
- {
- return (long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- long lrint(double value) NOEXCEPT
- {
- return (long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- long lrintf(float value) NOEXCEPT
- {
- return (long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- long long llrintl(long double value) NOEXCEPT
- {
- return (long long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- long long llrint(double value) NOEXCEPT
- {
- return (long long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- long long llrintf(float value) NOEXCEPT
- {
- return (long long)internal_to_integer(value, RoundingMode { fegetround() });
- }
- float ceilf(float value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Up);
- }
- double ceil(double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Up);
- }
- long double ceill(long double value) NOEXCEPT
- {
- return internal_to_integer(value, RoundingMode::Up);
- }
- long double modfl(long double x, long double* intpart) NOEXCEPT
- {
- return internal_modf(x, intpart);
- }
- double modf(double x, double* intpart) NOEXCEPT
- {
- return internal_modf(x, intpart);
- }
- float modff(float x, float* intpart) NOEXCEPT
- {
- return internal_modf(x, intpart);
- }
- double gamma(double x) NOEXCEPT
- {
- // Stirling approximation
- return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
- }
- long double tgammal(long double value) NOEXCEPT
- {
- return internal_gamma(value);
- }
- double tgamma(double value) NOEXCEPT
- {
- return internal_gamma(value);
- }
- float tgammaf(float value) NOEXCEPT
- {
- return internal_gamma(value);
- }
- int signgam = 0;
- long double lgammal(long double value) NOEXCEPT
- {
- return lgammal_r(value, &signgam);
- }
- double lgamma(double value) NOEXCEPT
- {
- return lgamma_r(value, &signgam);
- }
- float lgammaf(float value) NOEXCEPT
- {
- return lgammaf_r(value, &signgam);
- }
- long double lgammal_r(long double value, int* sign) NOEXCEPT
- {
- if (value == 1.0 || value == 2.0)
- return 0.0;
- if (isinf(value) || value == 0.0)
- return INFINITY;
- long double result = logl(internal_gamma(value));
- *sign = signbit(result) ? -1 : 1;
- return result;
- }
- double lgamma_r(double value, int* sign) NOEXCEPT
- {
- if (value == 1.0 || value == 2.0)
- return 0.0;
- if (isinf(value) || value == 0.0)
- return INFINITY;
- double result = log(internal_gamma(value));
- *sign = signbit(result) ? -1 : 1;
- return result;
- }
- float lgammaf_r(float value, int* sign) NOEXCEPT
- {
- if (value == 1.0 || value == 2.0)
- return 0.0;
- if (isinf(value) || value == 0.0)
- return INFINITY;
- float result = logf(internal_gamma(value));
- *sign = signbit(result) ? -1 : 1;
- return result;
- }
- long double expm1l(long double x) NOEXCEPT
- {
- return expl(x) - 1;
- }
- double expm1(double x) NOEXCEPT
- {
- return exp(x) - 1;
- }
- float expm1f(float x) NOEXCEPT
- {
- return expf(x) - 1;
- }
- long double cbrtl(long double x) NOEXCEPT
- {
- if (isinf(x) || x == 0)
- return x;
- if (x < 0)
- return -cbrtl(-x);
- long double r = x;
- long double ex = 0;
- while (r < 0.125l) {
- r *= 8;
- ex--;
- }
- while (r > 1.0l) {
- r *= 0.125l;
- ex++;
- }
- r = (-0.46946116l * r + 1.072302l) * r + 0.3812513l;
- while (ex < 0) {
- r *= 0.5l;
- ex++;
- }
- while (ex > 0) {
- r *= 2.0l;
- ex--;
- }
- r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
- r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
- r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
- r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
- return r;
- }
- double cbrt(double x) NOEXCEPT
- {
- return (double)cbrtl(x);
- }
- float cbrtf(float x) NOEXCEPT
- {
- return (float)cbrtl(x);
- }
- long double log1pl(long double x) NOEXCEPT
- {
- return logl(1 + x);
- }
- double log1p(double x) NOEXCEPT
- {
- return log(1 + x);
- }
- float log1pf(float x) NOEXCEPT
- {
- return logf(1 + x);
- }
- long double acoshl(long double x) NOEXCEPT
- {
- return logl(x + sqrtl(x * x - 1));
- }
- double acosh(double x) NOEXCEPT
- {
- return log(x + sqrt(x * x - 1));
- }
- float acoshf(float x) NOEXCEPT
- {
- return logf(x + sqrtf(x * x - 1));
- }
- long double asinhl(long double x) NOEXCEPT
- {
- return logl(x + sqrtl(x * x + 1));
- }
- double asinh(double x) NOEXCEPT
- {
- return log(x + sqrt(x * x + 1));
- }
- float asinhf(float x) NOEXCEPT
- {
- return logf(x + sqrtf(x * x + 1));
- }
- long double atanhl(long double x) NOEXCEPT
- {
- return logl((1 + x) / (1 - x)) / 2.0l;
- }
- double atanh(double x) NOEXCEPT
- {
- return log((1 + x) / (1 - x)) / 2.0;
- }
- float atanhf(float x) NOEXCEPT
- {
- return logf((1 + x) / (1 - x)) / 2.0f;
- }
- long double hypotl(long double x, long double y) NOEXCEPT
- {
- return sqrtl(x * x + y * y);
- }
- double hypot(double x, double y) NOEXCEPT
- {
- return sqrt(x * x + y * y);
- }
- float hypotf(float x, float y) NOEXCEPT
- {
- return sqrtf(x * x + y * y);
- }
- long double erfl(long double x) NOEXCEPT
- {
- // algorithm taken from Abramowitz and Stegun (no. 26.2.17)
- long double t = 1 / (1 + 0.47047l * fabsl(x));
- long double poly = t * (0.3480242l + t * (-0.958798l + t * 0.7478556l));
- long double answer = 1 - poly * expl(-x * x);
- if (x < 0)
- return -answer;
- return answer;
- }
- double erf(double x) NOEXCEPT
- {
- return (double)erfl(x);
- }
- float erff(float x) NOEXCEPT
- {
- return (float)erf(x);
- }
- long double erfcl(long double x) NOEXCEPT
- {
- return 1 - erfl(x);
- }
- double erfc(double x) NOEXCEPT
- {
- return 1 - erf(x);
- }
- float erfcf(float x) NOEXCEPT
- {
- return 1 - erff(x);
- }
- double nextafter(double x, double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- float nextafterf(float x, float target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- long double nextafterl(long double x, long double target) NOEXCEPT
- {
- return internal_nextafter(x, target >= x);
- }
- double nexttoward(double x, long double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- float nexttowardf(float x, long double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- long double nexttowardl(long double x, long double target) NOEXCEPT
- {
- if (x == target)
- return target;
- return internal_nextafter(x, target >= x);
- }
- float copysignf(float x, float y) NOEXCEPT
- {
- return internal_copysign(x, y);
- }
- double copysign(double x, double y) NOEXCEPT
- {
- return internal_copysign(x, y);
- }
- long double copysignl(long double x, long double y) NOEXCEPT
- {
- return internal_copysign(x, y);
- }
- float scalbnf(float x, int exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- double scalbn(double x, int exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- long double scalbnl(long double x, int exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- float scalbnlf(float x, long exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- double scalbln(double x, long exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- long double scalblnl(long double x, long exponent) NOEXCEPT
- {
- return internal_scalbn(x, exponent);
- }
- long double fmaxl(long double x, long double y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x > y ? x : y;
- }
- double fmax(double x, double y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x > y ? x : y;
- }
- float fmaxf(float x, float y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x > y ? x : y;
- }
- long double fminl(long double x, long double y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x < y ? x : y;
- }
- double fmin(double x, double y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x < y ? x : y;
- }
- float fminf(float x, float y) NOEXCEPT
- {
- if (isnan(x))
- return y;
- if (isnan(y))
- return x;
- return x < y ? x : y;
- }
- }
|