math.cpp 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021, Mițca Dumitru <dumitru0mitca@gmail.com>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/Platform.h>
  28. #include <AK/StdLibExtras.h>
  29. #include <LibC/assert.h>
  30. #include <fenv.h>
  31. #include <math.h>
  32. #include <stdint.h>
  33. #include <stdlib.h>
  34. template<size_t>
  35. constexpr double e_to_power();
  36. template<>
  37. constexpr double e_to_power<0>() { return 1; }
  38. template<size_t exponent>
  39. constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
  40. template<size_t>
  41. constexpr size_t factorial();
  42. template<>
  43. constexpr size_t factorial<0>() { return 1; }
  44. template<size_t value>
  45. constexpr size_t factorial() { return value * factorial<value - 1>(); }
  46. template<size_t>
  47. constexpr size_t product_even();
  48. template<>
  49. constexpr size_t product_even<2>() { return 2; }
  50. template<size_t value>
  51. constexpr size_t product_even() { return value * product_even<value - 2>(); }
  52. template<size_t>
  53. constexpr size_t product_odd();
  54. template<>
  55. constexpr size_t product_odd<1>() { return 1; }
  56. template<size_t value>
  57. constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
  58. enum class RoundingMode {
  59. ToZero = FE_TOWARDZERO,
  60. Up = FE_UPWARD,
  61. Down = FE_DOWNWARD,
  62. ToEven = FE_TONEAREST
  63. };
  64. template<typename T>
  65. union FloatExtractor;
  66. #if ARCH(I386) || ARCH(X86_64)
  67. // This assumes long double is 80 bits, which is true with GCC on Intel platforms
  68. template<>
  69. union FloatExtractor<long double> {
  70. static const int mantissa_bits = 64;
  71. static const unsigned long long mantissa_max = ~0u;
  72. static const int exponent_bias = 16383;
  73. static const int exponent_bits = 15;
  74. static const unsigned exponent_max = 32767;
  75. struct {
  76. unsigned long long mantissa;
  77. unsigned exponent : 15;
  78. unsigned sign : 1;
  79. };
  80. long double d;
  81. };
  82. #endif
  83. template<>
  84. union FloatExtractor<double> {
  85. static const int mantissa_bits = 52;
  86. static const unsigned long long mantissa_max = (1ull << 52) - 1;
  87. static const int exponent_bias = 1023;
  88. static const int exponent_bits = 11;
  89. static const unsigned exponent_max = 2047;
  90. struct {
  91. unsigned long long mantissa : 52;
  92. unsigned exponent : 11;
  93. unsigned sign : 1;
  94. };
  95. double d;
  96. };
  97. template<>
  98. union FloatExtractor<float> {
  99. static const int mantissa_bits = 23;
  100. static const unsigned mantissa_max = (1 << 23) - 1;
  101. static const int exponent_bias = 127;
  102. static const int exponent_bits = 8;
  103. static const unsigned exponent_max = 255;
  104. struct {
  105. unsigned long long mantissa : 23;
  106. unsigned exponent : 8;
  107. unsigned sign : 1;
  108. };
  109. float d;
  110. };
  111. // This is much branchier than it really needs to be
  112. template<typename FloatType>
  113. static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
  114. {
  115. if (!isfinite(x))
  116. return x;
  117. using Extractor = FloatExtractor<decltype(x)>;
  118. Extractor extractor;
  119. extractor.d = x;
  120. auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
  121. bool round = false;
  122. bool guard = false;
  123. if (unbiased_exponent < 0) {
  124. // it was easier to special case [0..1) as it saves us from
  125. // handling subnormals, underflows, etc
  126. if (unbiased_exponent == -1) {
  127. round = true;
  128. }
  129. guard = extractor.mantissa != 0;
  130. extractor.mantissa = 0;
  131. extractor.exponent = 0;
  132. } else {
  133. if (unbiased_exponent >= Extractor::mantissa_bits)
  134. return x;
  135. auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
  136. auto dead_mask = (1ull << dead_bitcount) - 1;
  137. auto dead_bits = extractor.mantissa & dead_mask;
  138. extractor.mantissa &= ~dead_mask;
  139. auto guard_mask = dead_mask >> 1;
  140. guard = (dead_bits & guard_mask) != 0;
  141. round = (dead_bits & ~guard_mask) != 0;
  142. }
  143. bool should_round = false;
  144. switch (rounding_mode) {
  145. case RoundingMode::ToEven:
  146. should_round = round;
  147. break;
  148. case RoundingMode::Up:
  149. if (!extractor.sign)
  150. should_round = guard || round;
  151. break;
  152. case RoundingMode::Down:
  153. if (extractor.sign)
  154. should_round = guard || round;
  155. break;
  156. case RoundingMode::ToZero:
  157. break;
  158. }
  159. if (should_round) {
  160. // We could do this ourselves, but this saves us from manually
  161. // handling overflow.
  162. if (extractor.sign)
  163. extractor.d -= 1.0;
  164. else
  165. extractor.d += 1.0;
  166. }
  167. return extractor.d;
  168. }
  169. // This is much branchier than it really needs to be
  170. template<typename FloatType>
  171. static FloatType internal_nextafter(FloatType x, bool up)
  172. {
  173. if (!isfinite(x))
  174. return x;
  175. using Extractor = FloatExtractor<decltype(x)>;
  176. Extractor extractor;
  177. extractor.d = x;
  178. if (x == 0) {
  179. if (!extractor.sign) {
  180. extractor.mantissa = 1;
  181. extractor.sign = !up;
  182. return extractor.d;
  183. }
  184. if (up) {
  185. extractor.sign = false;
  186. extractor.mantissa = 1;
  187. return extractor.d;
  188. }
  189. extractor.mantissa = 1;
  190. extractor.sign = up != extractor.sign;
  191. return extractor.d;
  192. }
  193. if (up != extractor.sign) {
  194. extractor.mantissa++;
  195. if (!extractor.mantissa) {
  196. // no need to normalize the mantissa as we just hit a power
  197. // of two.
  198. extractor.exponent++;
  199. if (extractor.exponent == Extractor::exponent_max) {
  200. extractor.exponent = Extractor::exponent_max - 1;
  201. extractor.mantissa = Extractor::mantissa_max;
  202. }
  203. }
  204. return extractor.d;
  205. }
  206. if (!extractor.mantissa) {
  207. if (extractor.exponent) {
  208. extractor.exponent--;
  209. extractor.mantissa = Extractor::mantissa_max;
  210. } else {
  211. extractor.d = 0;
  212. }
  213. return extractor.d;
  214. }
  215. extractor.mantissa--;
  216. if (extractor.mantissa != Extractor::mantissa_max)
  217. return extractor.d;
  218. if (extractor.exponent) {
  219. extractor.exponent--;
  220. // normalize
  221. extractor.mantissa <<= 1;
  222. } else {
  223. if (extractor.sign) {
  224. // Negative infinity
  225. extractor.mantissa = 0;
  226. extractor.exponent = Extractor::exponent_max;
  227. }
  228. }
  229. return extractor.d;
  230. }
  231. template<typename FloatT>
  232. static int internal_ilogb(FloatT x) NOEXCEPT
  233. {
  234. if (x == 0)
  235. return FP_ILOGB0;
  236. if (isnan(x))
  237. return FP_ILOGNAN;
  238. if (!isfinite(x))
  239. return INT_MAX;
  240. using Extractor = FloatExtractor<FloatT>;
  241. Extractor extractor;
  242. extractor.d = x;
  243. return (int)extractor.exponent - Extractor::exponent_bias;
  244. }
  245. template<typename FloatT>
  246. static FloatT internal_modf(FloatT x, FloatT* intpart) NOEXCEPT
  247. {
  248. FloatT integer_part = internal_to_integer(x, RoundingMode::ToZero);
  249. *intpart = integer_part;
  250. auto fraction = x - integer_part;
  251. if (signbit(fraction) != signbit(x))
  252. fraction = -fraction;
  253. return fraction;
  254. }
  255. template<typename FloatT>
  256. static FloatT internal_scalbn(FloatT x, int exponent) NOEXCEPT
  257. {
  258. if (x == 0 || !isfinite(x) || isnan(x) || exponent == 0)
  259. return x;
  260. using Extractor = FloatExtractor<FloatT>;
  261. Extractor extractor;
  262. extractor.d = x;
  263. if (extractor.exponent != 0) {
  264. extractor.exponent = clamp((int)extractor.exponent + exponent, 0, (int)Extractor::exponent_max);
  265. return extractor.d;
  266. }
  267. unsigned leading_mantissa_zeroes = extractor.mantissa == 0 ? 32 : __builtin_clz(extractor.mantissa);
  268. int shift = min((int)leading_mantissa_zeroes, exponent);
  269. exponent = max(exponent - shift, 0);
  270. extractor.exponent <<= shift;
  271. extractor.exponent = exponent + 1;
  272. return extractor.d;
  273. }
  274. template<typename FloatT>
  275. static FloatT internal_copysign(FloatT x, FloatT y) NOEXCEPT
  276. {
  277. using Extractor = FloatExtractor<FloatT>;
  278. Extractor ex, ey;
  279. ex.d = x;
  280. ey.d = y;
  281. ex.sign = ey.sign;
  282. return ex.d;
  283. }
  284. template<typename FloatT>
  285. static FloatT internal_gamma(FloatT x) NOEXCEPT
  286. {
  287. if (isnan(x))
  288. return (FloatT)NAN;
  289. if (x == (FloatT)0.0)
  290. return signbit(x) ? (FloatT)-INFINITY : (FloatT)INFINITY;
  291. if (x < (FloatT)0 && (rintl(x) == x || isinf(x)))
  292. return (FloatT)NAN;
  293. if (isinf(x))
  294. return (FloatT)INFINITY;
  295. using Extractor = FloatExtractor<FloatT>;
  296. // These constants were obtained through use of WolframAlpha
  297. constexpr long long max_integer_whose_factorial_fits = (Extractor::mantissa_bits == FloatExtractor<long double>::mantissa_bits ? 20 : (Extractor::mantissa_bits == FloatExtractor<double>::mantissa_bits ? 18 : (Extractor::mantissa_bits == FloatExtractor<float>::mantissa_bits ? 10 : 0)));
  298. static_assert(max_integer_whose_factorial_fits != 0, "internal_gamma needs to be aware of the integer factorial that fits in this floating point type.");
  299. if (rintl(x) == (long double)x && x <= max_integer_whose_factorial_fits) {
  300. long long result = 1;
  301. for (long long cursor = 1; cursor <= min(max_integer_whose_factorial_fits, (long long)x); cursor++)
  302. result *= cursor;
  303. return (FloatT)result;
  304. }
  305. // Stirling approximation
  306. return sqrtl(2.0 * M_PI / x) * powl(x / M_E, x);
  307. }
  308. extern "C" {
  309. float nanf(const char* s) NOEXCEPT
  310. {
  311. return __builtin_nanf(s);
  312. }
  313. double nan(const char* s) NOEXCEPT
  314. {
  315. return __builtin_nan(s);
  316. }
  317. long double nanl(const char* s) NOEXCEPT
  318. {
  319. return __builtin_nanl(s);
  320. }
  321. double trunc(double x) NOEXCEPT
  322. {
  323. return internal_to_integer(x, RoundingMode::ToZero);
  324. }
  325. float truncf(float x) NOEXCEPT
  326. {
  327. return internal_to_integer(x, RoundingMode::ToZero);
  328. }
  329. long double truncl(long double x) NOEXCEPT
  330. {
  331. return internal_to_integer(x, RoundingMode::ToZero);
  332. }
  333. long double cosl(long double angle) NOEXCEPT
  334. {
  335. return sinl(angle + M_PI_2);
  336. }
  337. double cos(double angle) NOEXCEPT
  338. {
  339. return sin(angle + M_PI_2);
  340. }
  341. float cosf(float angle) NOEXCEPT
  342. {
  343. return sinf(angle + M_PI_2);
  344. }
  345. long double sinl(long double angle) NOEXCEPT
  346. {
  347. long double ret = 0.0;
  348. __asm__(
  349. "fsin"
  350. : "=t"(ret)
  351. : "0"(angle));
  352. return ret;
  353. }
  354. // This can also be done with a taylor expansion, but for
  355. // now this works pretty well (and doesn't mess anything up
  356. // in quake in particular, which is very Floating-Point precision
  357. // heavy)
  358. double sin(double angle) NOEXCEPT
  359. {
  360. double ret = 0.0;
  361. __asm__(
  362. "fsin"
  363. : "=t"(ret)
  364. : "0"(angle));
  365. return ret;
  366. }
  367. float sinf(float angle) NOEXCEPT
  368. {
  369. float ret = 0.0f;
  370. __asm__(
  371. "fsin"
  372. : "=t"(ret)
  373. : "0"(angle));
  374. return ret;
  375. }
  376. long double powl(long double x, long double y) NOEXCEPT
  377. {
  378. // FIXME: Please fix me. I am naive.
  379. if (isnan(y))
  380. return y;
  381. if (y == 0)
  382. return 1;
  383. if (x == 0)
  384. return 0;
  385. if (y == 1)
  386. return x;
  387. int y_as_int = (int)y;
  388. if (y == (long double)y_as_int) {
  389. long double result = x;
  390. for (int i = 0; i < fabsl(y) - 1; ++i)
  391. result *= x;
  392. if (y < 0)
  393. result = 1.0l / result;
  394. return result;
  395. }
  396. return exp2l(y * log2l(x));
  397. }
  398. double pow(double x, double y) NOEXCEPT
  399. {
  400. return (double)powl(x, y);
  401. }
  402. float powf(float x, float y) NOEXCEPT
  403. {
  404. return (float)powl(x, y);
  405. }
  406. // On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn
  407. long double ldexpl(long double x, int exp) NOEXCEPT
  408. {
  409. return internal_scalbn(x, exp);
  410. }
  411. double ldexp(double x, int exp) NOEXCEPT
  412. {
  413. return internal_scalbn(x, exp);
  414. }
  415. float ldexpf(float x, int exp) NOEXCEPT
  416. {
  417. return internal_scalbn(x, exp);
  418. }
  419. long double tanhl(long double x) NOEXCEPT
  420. {
  421. if (x > 0) {
  422. long double exponentiated = expl(2 * x);
  423. return (exponentiated - 1) / (exponentiated + 1);
  424. }
  425. long double plusX = expl(x);
  426. long double minusX = 1 / plusX;
  427. return (plusX - minusX) / (plusX + minusX);
  428. }
  429. double tanh(double x) NOEXCEPT
  430. {
  431. return (double)tanhl(x);
  432. }
  433. float tanhf(float x) NOEXCEPT
  434. {
  435. return (float)tanhl(x);
  436. }
  437. static long double ampsin(long double angle) NOEXCEPT
  438. {
  439. long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI;
  440. long double looped_angle_squared = looped_angle * looped_angle;
  441. long double quadratic_term;
  442. if (looped_angle > 0) {
  443. quadratic_term = -looped_angle_squared;
  444. } else {
  445. quadratic_term = looped_angle_squared;
  446. }
  447. long double linear_term = M_PI * looped_angle;
  448. return quadratic_term + linear_term;
  449. }
  450. long double tanl(long double angle) NOEXCEPT
  451. {
  452. return ampsin(angle) / ampsin(M_PI_2 + angle);
  453. }
  454. double tan(double angle) NOEXCEPT
  455. {
  456. return (double)tanl(angle);
  457. }
  458. float tanf(float angle) NOEXCEPT
  459. {
  460. return (float)tanl(angle);
  461. }
  462. long double sqrtl(long double x) NOEXCEPT
  463. {
  464. long double res;
  465. asm("fsqrt"
  466. : "=t"(res)
  467. : "0"(x));
  468. return res;
  469. }
  470. double sqrt(double x) NOEXCEPT
  471. {
  472. double res;
  473. __asm__("fsqrt"
  474. : "=t"(res)
  475. : "0"(x));
  476. return res;
  477. }
  478. float sqrtf(float x) NOEXCEPT
  479. {
  480. float res;
  481. __asm__("fsqrt"
  482. : "=t"(res)
  483. : "0"(x));
  484. return res;
  485. }
  486. long double sinhl(long double x) NOEXCEPT
  487. {
  488. long double exponentiated = expl(x);
  489. if (x > 0)
  490. return (exponentiated * exponentiated - 1) / 2 / exponentiated;
  491. return (exponentiated - 1 / exponentiated) / 2;
  492. }
  493. double sinh(double x) NOEXCEPT
  494. {
  495. return (double)sinhl(x);
  496. }
  497. float sinhf(float x) NOEXCEPT
  498. {
  499. return (float)sinhl(x);
  500. }
  501. long double log10l(long double x) NOEXCEPT
  502. {
  503. long double ret = 0.0l;
  504. __asm__(
  505. "fldlg2\n"
  506. "fld %%st(1)\n"
  507. "fyl2x\n"
  508. "fstp %%st(1)"
  509. : "=t"(ret)
  510. : "0"(x));
  511. return ret;
  512. }
  513. double log10(double x) NOEXCEPT
  514. {
  515. return (double)log10l(x);
  516. }
  517. float log10f(float x) NOEXCEPT
  518. {
  519. return (float)log10l(x);
  520. }
  521. long double logl(long double x) NOEXCEPT
  522. {
  523. long double ret = 0.0l;
  524. asm(
  525. "fldln2\n"
  526. "fld %%st(1)\n"
  527. "fyl2x\n"
  528. "fstp %%st(1)"
  529. : "=t"(ret)
  530. : "0"(x));
  531. return ret;
  532. }
  533. double log(double x) NOEXCEPT
  534. {
  535. return (double)logl(x);
  536. }
  537. float logf(float x) NOEXCEPT
  538. {
  539. return (float)logl(x);
  540. }
  541. long double fmodl(long double index, long double period) NOEXCEPT
  542. {
  543. return index - truncl(index / period) * period;
  544. }
  545. double fmod(double index, double period) NOEXCEPT
  546. {
  547. return index - trunc(index / period) * period;
  548. }
  549. float fmodf(float index, float period) NOEXCEPT
  550. {
  551. return index - trunc(index / period) * period;
  552. }
  553. // FIXME: These aren't exactly like fmod, but these definitions are probably good enough for now
  554. long double remainderl(long double x, long double y) NOEXCEPT
  555. {
  556. return fmodl(x, y);
  557. }
  558. double remainder(double x, double y) NOEXCEPT
  559. {
  560. return fmod(x, y);
  561. }
  562. float remainderf(float x, float y) NOEXCEPT
  563. {
  564. return fmodf(x, y);
  565. }
  566. long double expl(long double exponent) NOEXCEPT
  567. {
  568. long double res = 0;
  569. asm("fldl2e\n"
  570. "fmulp\n"
  571. "fld1\n"
  572. "fld %%st(1)\n"
  573. "fprem\n"
  574. "f2xm1\n"
  575. "faddp\n"
  576. "fscale\n"
  577. "fstp %%st(1)"
  578. : "=t"(res)
  579. : "0"(exponent));
  580. return res;
  581. }
  582. double exp(double exponent) NOEXCEPT
  583. {
  584. return (double)expl(exponent);
  585. }
  586. float expf(float exponent) NOEXCEPT
  587. {
  588. return (float)expl(exponent);
  589. }
  590. long double exp2l(long double exponent) NOEXCEPT
  591. {
  592. long double res = 0;
  593. asm("fld1\n"
  594. "fld %%st(1)\n"
  595. "fprem\n"
  596. "f2xm1\n"
  597. "faddp\n"
  598. "fscale\n"
  599. "fstp %%st(1)"
  600. : "=t"(res)
  601. : "0"(exponent));
  602. return res;
  603. }
  604. double exp2(double exponent) NOEXCEPT
  605. {
  606. return (double)exp2l(exponent);
  607. }
  608. float exp2f(float exponent) NOEXCEPT
  609. {
  610. return (float)exp2l(exponent);
  611. }
  612. long double coshl(long double x) NOEXCEPT
  613. {
  614. long double exponentiated = expl(-x);
  615. if (x < 0)
  616. return (1 + exponentiated * exponentiated) / 2 / exponentiated;
  617. return (1 / exponentiated + exponentiated) / 2;
  618. }
  619. double cosh(double x) NOEXCEPT
  620. {
  621. return (double)coshl(x);
  622. }
  623. float coshf(float x) NOEXCEPT
  624. {
  625. return (float)coshl(x);
  626. }
  627. long double atan2l(long double y, long double x) NOEXCEPT
  628. {
  629. if (x > 0)
  630. return atanl(y / x);
  631. if (x == 0) {
  632. if (y > 0)
  633. return M_PI_2;
  634. if (y < 0)
  635. return -M_PI_2;
  636. return 0;
  637. }
  638. if (y >= 0)
  639. return atanl(y / x) + M_PI;
  640. return atanl(y / x) - M_PI;
  641. }
  642. double atan2(double y, double x) NOEXCEPT
  643. {
  644. return (double)atan2l(y, x);
  645. }
  646. float atan2f(float y, float x) NOEXCEPT
  647. {
  648. return (float)atan2l(y, x);
  649. }
  650. long double atanl(long double x) NOEXCEPT
  651. {
  652. if (x < 0)
  653. return -atanl(-x);
  654. if (x > 1)
  655. return M_PI_2 - atanl(1 / x);
  656. long double squared = x * x;
  657. return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
  658. }
  659. double atan(double x) NOEXCEPT
  660. {
  661. return (double)atanl(x);
  662. }
  663. float atanf(float x) NOEXCEPT
  664. {
  665. return (float)atanl(x);
  666. }
  667. long double asinl(long double x) NOEXCEPT
  668. {
  669. if (x > 1 || x < -1)
  670. return NAN;
  671. if (x > 0.5 || x < -0.5)
  672. return 2 * atanl(x / (1 + sqrtl(1 - x * x)));
  673. long double squared = x * x;
  674. long double value = x;
  675. long double i = x * squared;
  676. value += i * product_odd<1>() / product_even<2>() / 3;
  677. i *= squared;
  678. value += i * product_odd<3>() / product_even<4>() / 5;
  679. i *= squared;
  680. value += i * product_odd<5>() / product_even<6>() / 7;
  681. i *= squared;
  682. value += i * product_odd<7>() / product_even<8>() / 9;
  683. i *= squared;
  684. value += i * product_odd<9>() / product_even<10>() / 11;
  685. i *= squared;
  686. value += i * product_odd<11>() / product_even<12>() / 13;
  687. return value;
  688. }
  689. double asin(double x) NOEXCEPT
  690. {
  691. return (double)asinl(x);
  692. }
  693. float asinf(float x) NOEXCEPT
  694. {
  695. return (float)asinl(x);
  696. }
  697. long double acosl(long double x) NOEXCEPT
  698. {
  699. return M_PI_2 - asinl(x);
  700. }
  701. double acos(double x) NOEXCEPT
  702. {
  703. return M_PI_2 - asin(x);
  704. }
  705. float acosf(float x) NOEXCEPT
  706. {
  707. return M_PI_2 - asinf(x);
  708. }
  709. long double fabsl(long double value) NOEXCEPT
  710. {
  711. return value < 0 ? -value : value;
  712. }
  713. double fabs(double value) NOEXCEPT
  714. {
  715. return value < 0 ? -value : value;
  716. }
  717. float fabsf(float value) NOEXCEPT
  718. {
  719. return value < 0 ? -value : value;
  720. }
  721. int ilogbl(long double x) NOEXCEPT
  722. {
  723. return internal_ilogb(x);
  724. }
  725. int ilogb(double x) NOEXCEPT
  726. {
  727. return internal_ilogb(x);
  728. }
  729. int ilogbf(float x) NOEXCEPT
  730. {
  731. return internal_ilogb(x);
  732. }
  733. long double logbl(long double x) NOEXCEPT
  734. {
  735. return ilogbl(x);
  736. }
  737. double logb(double x) NOEXCEPT
  738. {
  739. return ilogb(x);
  740. }
  741. float logbf(float x) NOEXCEPT
  742. {
  743. return ilogbf(x);
  744. }
  745. long double log2l(long double x) NOEXCEPT
  746. {
  747. long double ret = 0.0;
  748. asm(
  749. "fld1\n"
  750. "fld %%st(1)\n"
  751. "fyl2x\n"
  752. "fstp %%st(1)"
  753. : "=t"(ret)
  754. : "0"(x));
  755. return ret;
  756. }
  757. double log2(double x) NOEXCEPT
  758. {
  759. return (double)log2l(x);
  760. }
  761. float log2f(float x) NOEXCEPT
  762. {
  763. return (float)log2l(x);
  764. }
  765. double frexp(double x, int* exp) NOEXCEPT
  766. {
  767. *exp = (x == 0) ? 0 : (1 + ilogb(x));
  768. return scalbn(x, -(*exp));
  769. }
  770. float frexpf(float x, int* exp) NOEXCEPT
  771. {
  772. *exp = (x == 0) ? 0 : (1 + ilogbf(x));
  773. return scalbnf(x, -(*exp));
  774. }
  775. long double frexpl(long double x, int* exp) NOEXCEPT
  776. {
  777. *exp = (x == 0) ? 0 : (1 + ilogbl(x));
  778. return scalbnl(x, -(*exp));
  779. }
  780. double round(double value) NOEXCEPT
  781. {
  782. return internal_to_integer(value, RoundingMode::ToEven);
  783. }
  784. float roundf(float value) NOEXCEPT
  785. {
  786. return internal_to_integer(value, RoundingMode::ToEven);
  787. }
  788. long double roundl(long double value) NOEXCEPT
  789. {
  790. return internal_to_integer(value, RoundingMode::ToEven);
  791. }
  792. long lroundf(float value) NOEXCEPT
  793. {
  794. return internal_to_integer(value, RoundingMode::ToEven);
  795. }
  796. long lround(double value) NOEXCEPT
  797. {
  798. return internal_to_integer(value, RoundingMode::ToEven);
  799. }
  800. long lroundl(long double value) NOEXCEPT
  801. {
  802. return internal_to_integer(value, RoundingMode::ToEven);
  803. }
  804. long long llroundf(float value) NOEXCEPT
  805. {
  806. return internal_to_integer(value, RoundingMode::ToEven);
  807. }
  808. long long llround(double value) NOEXCEPT
  809. {
  810. return internal_to_integer(value, RoundingMode::ToEven);
  811. }
  812. long long llroundd(long double value) NOEXCEPT
  813. {
  814. return internal_to_integer(value, RoundingMode::ToEven);
  815. }
  816. float floorf(float value) NOEXCEPT
  817. {
  818. return internal_to_integer(value, RoundingMode::Down);
  819. }
  820. double floor(double value) NOEXCEPT
  821. {
  822. return internal_to_integer(value, RoundingMode::Down);
  823. }
  824. long double floorl(long double value) NOEXCEPT
  825. {
  826. return internal_to_integer(value, RoundingMode::Down);
  827. }
  828. long double rintl(long double value) NOEXCEPT
  829. {
  830. return internal_to_integer(value, RoundingMode { fegetround() });
  831. }
  832. double rint(double value) NOEXCEPT
  833. {
  834. return internal_to_integer(value, RoundingMode { fegetround() });
  835. }
  836. float rintf(float value) NOEXCEPT
  837. {
  838. return internal_to_integer(value, RoundingMode { fegetround() });
  839. }
  840. long lrintl(long double value) NOEXCEPT
  841. {
  842. return (long)internal_to_integer(value, RoundingMode { fegetround() });
  843. }
  844. long lrint(double value) NOEXCEPT
  845. {
  846. return (long)internal_to_integer(value, RoundingMode { fegetround() });
  847. }
  848. long lrintf(float value) NOEXCEPT
  849. {
  850. return (long)internal_to_integer(value, RoundingMode { fegetround() });
  851. }
  852. long long llrintl(long double value) NOEXCEPT
  853. {
  854. return (long long)internal_to_integer(value, RoundingMode { fegetround() });
  855. }
  856. long long llrint(double value) NOEXCEPT
  857. {
  858. return (long long)internal_to_integer(value, RoundingMode { fegetround() });
  859. }
  860. long long llrintf(float value) NOEXCEPT
  861. {
  862. return (long long)internal_to_integer(value, RoundingMode { fegetround() });
  863. }
  864. float ceilf(float value) NOEXCEPT
  865. {
  866. return internal_to_integer(value, RoundingMode::Up);
  867. }
  868. double ceil(double value) NOEXCEPT
  869. {
  870. return internal_to_integer(value, RoundingMode::Up);
  871. }
  872. long double ceill(long double value) NOEXCEPT
  873. {
  874. return internal_to_integer(value, RoundingMode::Up);
  875. }
  876. long double modfl(long double x, long double* intpart) NOEXCEPT
  877. {
  878. return internal_modf(x, intpart);
  879. }
  880. double modf(double x, double* intpart) NOEXCEPT
  881. {
  882. return internal_modf(x, intpart);
  883. }
  884. float modff(float x, float* intpart) NOEXCEPT
  885. {
  886. return internal_modf(x, intpart);
  887. }
  888. double gamma(double x) NOEXCEPT
  889. {
  890. // Stirling approximation
  891. return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
  892. }
  893. long double tgammal(long double value) NOEXCEPT
  894. {
  895. return internal_gamma(value);
  896. }
  897. double tgamma(double value) NOEXCEPT
  898. {
  899. return internal_gamma(value);
  900. }
  901. float tgammaf(float value) NOEXCEPT
  902. {
  903. return internal_gamma(value);
  904. }
  905. int signgam = 0;
  906. long double lgammal(long double value) NOEXCEPT
  907. {
  908. return lgammal_r(value, &signgam);
  909. }
  910. double lgamma(double value) NOEXCEPT
  911. {
  912. return lgamma_r(value, &signgam);
  913. }
  914. float lgammaf(float value) NOEXCEPT
  915. {
  916. return lgammaf_r(value, &signgam);
  917. }
  918. long double lgammal_r(long double value, int* sign) NOEXCEPT
  919. {
  920. if (value == 1.0 || value == 2.0)
  921. return 0.0;
  922. if (isinf(value) || value == 0.0)
  923. return INFINITY;
  924. long double result = logl(internal_gamma(value));
  925. *sign = signbit(result) ? -1 : 1;
  926. return result;
  927. }
  928. double lgamma_r(double value, int* sign) NOEXCEPT
  929. {
  930. if (value == 1.0 || value == 2.0)
  931. return 0.0;
  932. if (isinf(value) || value == 0.0)
  933. return INFINITY;
  934. double result = log(internal_gamma(value));
  935. *sign = signbit(result) ? -1 : 1;
  936. return result;
  937. }
  938. float lgammaf_r(float value, int* sign) NOEXCEPT
  939. {
  940. if (value == 1.0 || value == 2.0)
  941. return 0.0;
  942. if (isinf(value) || value == 0.0)
  943. return INFINITY;
  944. float result = logf(internal_gamma(value));
  945. *sign = signbit(result) ? -1 : 1;
  946. return result;
  947. }
  948. long double expm1l(long double x) NOEXCEPT
  949. {
  950. return expl(x) - 1;
  951. }
  952. double expm1(double x) NOEXCEPT
  953. {
  954. return exp(x) - 1;
  955. }
  956. float expm1f(float x) NOEXCEPT
  957. {
  958. return expf(x) - 1;
  959. }
  960. long double cbrtl(long double x) NOEXCEPT
  961. {
  962. if (isinf(x) || x == 0)
  963. return x;
  964. if (x < 0)
  965. return -cbrtl(-x);
  966. long double r = x;
  967. long double ex = 0;
  968. while (r < 0.125l) {
  969. r *= 8;
  970. ex--;
  971. }
  972. while (r > 1.0l) {
  973. r *= 0.125l;
  974. ex++;
  975. }
  976. r = (-0.46946116l * r + 1.072302l) * r + 0.3812513l;
  977. while (ex < 0) {
  978. r *= 0.5l;
  979. ex++;
  980. }
  981. while (ex > 0) {
  982. r *= 2.0l;
  983. ex--;
  984. }
  985. r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
  986. r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
  987. r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
  988. r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
  989. return r;
  990. }
  991. double cbrt(double x) NOEXCEPT
  992. {
  993. return (double)cbrtl(x);
  994. }
  995. float cbrtf(float x) NOEXCEPT
  996. {
  997. return (float)cbrtl(x);
  998. }
  999. long double log1pl(long double x) NOEXCEPT
  1000. {
  1001. return logl(1 + x);
  1002. }
  1003. double log1p(double x) NOEXCEPT
  1004. {
  1005. return log(1 + x);
  1006. }
  1007. float log1pf(float x) NOEXCEPT
  1008. {
  1009. return logf(1 + x);
  1010. }
  1011. long double acoshl(long double x) NOEXCEPT
  1012. {
  1013. return logl(x + sqrtl(x * x - 1));
  1014. }
  1015. double acosh(double x) NOEXCEPT
  1016. {
  1017. return log(x + sqrt(x * x - 1));
  1018. }
  1019. float acoshf(float x) NOEXCEPT
  1020. {
  1021. return logf(x + sqrtf(x * x - 1));
  1022. }
  1023. long double asinhl(long double x) NOEXCEPT
  1024. {
  1025. return logl(x + sqrtl(x * x + 1));
  1026. }
  1027. double asinh(double x) NOEXCEPT
  1028. {
  1029. return log(x + sqrt(x * x + 1));
  1030. }
  1031. float asinhf(float x) NOEXCEPT
  1032. {
  1033. return logf(x + sqrtf(x * x + 1));
  1034. }
  1035. long double atanhl(long double x) NOEXCEPT
  1036. {
  1037. return logl((1 + x) / (1 - x)) / 2.0l;
  1038. }
  1039. double atanh(double x) NOEXCEPT
  1040. {
  1041. return log((1 + x) / (1 - x)) / 2.0;
  1042. }
  1043. float atanhf(float x) NOEXCEPT
  1044. {
  1045. return logf((1 + x) / (1 - x)) / 2.0f;
  1046. }
  1047. long double hypotl(long double x, long double y) NOEXCEPT
  1048. {
  1049. return sqrtl(x * x + y * y);
  1050. }
  1051. double hypot(double x, double y) NOEXCEPT
  1052. {
  1053. return sqrt(x * x + y * y);
  1054. }
  1055. float hypotf(float x, float y) NOEXCEPT
  1056. {
  1057. return sqrtf(x * x + y * y);
  1058. }
  1059. long double erfl(long double x) NOEXCEPT
  1060. {
  1061. // algorithm taken from Abramowitz and Stegun (no. 26.2.17)
  1062. long double t = 1 / (1 + 0.47047l * fabsl(x));
  1063. long double poly = t * (0.3480242l + t * (-0.958798l + t * 0.7478556l));
  1064. long double answer = 1 - poly * expl(-x * x);
  1065. if (x < 0)
  1066. return -answer;
  1067. return answer;
  1068. }
  1069. double erf(double x) NOEXCEPT
  1070. {
  1071. return (double)erfl(x);
  1072. }
  1073. float erff(float x) NOEXCEPT
  1074. {
  1075. return (float)erf(x);
  1076. }
  1077. long double erfcl(long double x) NOEXCEPT
  1078. {
  1079. return 1 - erfl(x);
  1080. }
  1081. double erfc(double x) NOEXCEPT
  1082. {
  1083. return 1 - erf(x);
  1084. }
  1085. float erfcf(float x) NOEXCEPT
  1086. {
  1087. return 1 - erff(x);
  1088. }
  1089. double nextafter(double x, double target) NOEXCEPT
  1090. {
  1091. if (x == target)
  1092. return target;
  1093. return internal_nextafter(x, target >= x);
  1094. }
  1095. float nextafterf(float x, float target) NOEXCEPT
  1096. {
  1097. if (x == target)
  1098. return target;
  1099. return internal_nextafter(x, target >= x);
  1100. }
  1101. long double nextafterl(long double x, long double target) NOEXCEPT
  1102. {
  1103. return internal_nextafter(x, target >= x);
  1104. }
  1105. double nexttoward(double x, long double target) NOEXCEPT
  1106. {
  1107. if (x == target)
  1108. return target;
  1109. return internal_nextafter(x, target >= x);
  1110. }
  1111. float nexttowardf(float x, long double target) NOEXCEPT
  1112. {
  1113. if (x == target)
  1114. return target;
  1115. return internal_nextafter(x, target >= x);
  1116. }
  1117. long double nexttowardl(long double x, long double target) NOEXCEPT
  1118. {
  1119. if (x == target)
  1120. return target;
  1121. return internal_nextafter(x, target >= x);
  1122. }
  1123. float copysignf(float x, float y) NOEXCEPT
  1124. {
  1125. return internal_copysign(x, y);
  1126. }
  1127. double copysign(double x, double y) NOEXCEPT
  1128. {
  1129. return internal_copysign(x, y);
  1130. }
  1131. long double copysignl(long double x, long double y) NOEXCEPT
  1132. {
  1133. return internal_copysign(x, y);
  1134. }
  1135. float scalbnf(float x, int exponent) NOEXCEPT
  1136. {
  1137. return internal_scalbn(x, exponent);
  1138. }
  1139. double scalbn(double x, int exponent) NOEXCEPT
  1140. {
  1141. return internal_scalbn(x, exponent);
  1142. }
  1143. long double scalbnl(long double x, int exponent) NOEXCEPT
  1144. {
  1145. return internal_scalbn(x, exponent);
  1146. }
  1147. float scalbnlf(float x, long exponent) NOEXCEPT
  1148. {
  1149. return internal_scalbn(x, exponent);
  1150. }
  1151. double scalbln(double x, long exponent) NOEXCEPT
  1152. {
  1153. return internal_scalbn(x, exponent);
  1154. }
  1155. long double scalblnl(long double x, long exponent) NOEXCEPT
  1156. {
  1157. return internal_scalbn(x, exponent);
  1158. }
  1159. long double fmaxl(long double x, long double y) NOEXCEPT
  1160. {
  1161. if (isnan(x))
  1162. return y;
  1163. if (isnan(y))
  1164. return x;
  1165. return x > y ? x : y;
  1166. }
  1167. double fmax(double x, double y) NOEXCEPT
  1168. {
  1169. if (isnan(x))
  1170. return y;
  1171. if (isnan(y))
  1172. return x;
  1173. return x > y ? x : y;
  1174. }
  1175. float fmaxf(float x, float y) NOEXCEPT
  1176. {
  1177. if (isnan(x))
  1178. return y;
  1179. if (isnan(y))
  1180. return x;
  1181. return x > y ? x : y;
  1182. }
  1183. long double fminl(long double x, long double y) NOEXCEPT
  1184. {
  1185. if (isnan(x))
  1186. return y;
  1187. if (isnan(y))
  1188. return x;
  1189. return x < y ? x : y;
  1190. }
  1191. double fmin(double x, double y) NOEXCEPT
  1192. {
  1193. if (isnan(x))
  1194. return y;
  1195. if (isnan(y))
  1196. return x;
  1197. return x < y ? x : y;
  1198. }
  1199. float fminf(float x, float y) NOEXCEPT
  1200. {
  1201. if (isnan(x))
  1202. return y;
  1203. if (isnan(y))
  1204. return x;
  1205. return x < y ? x : y;
  1206. }
  1207. }