Op.cpp 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317
  1. /*
  2. * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/HashTable.h>
  9. #include <LibJS/Bytecode/Interpreter.h>
  10. #include <LibJS/Bytecode/Op.h>
  11. #include <LibJS/Runtime/AbstractOperations.h>
  12. #include <LibJS/Runtime/Array.h>
  13. #include <LibJS/Runtime/BigInt.h>
  14. #include <LibJS/Runtime/DeclarativeEnvironment.h>
  15. #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
  16. #include <LibJS/Runtime/Environment.h>
  17. #include <LibJS/Runtime/FunctionEnvironment.h>
  18. #include <LibJS/Runtime/GlobalEnvironment.h>
  19. #include <LibJS/Runtime/GlobalObject.h>
  20. #include <LibJS/Runtime/Iterator.h>
  21. #include <LibJS/Runtime/IteratorOperations.h>
  22. #include <LibJS/Runtime/NativeFunction.h>
  23. #include <LibJS/Runtime/ObjectEnvironment.h>
  24. #include <LibJS/Runtime/RegExpObject.h>
  25. #include <LibJS/Runtime/Value.h>
  26. namespace JS::Bytecode {
  27. String Instruction::to_string(Bytecode::Executable const& executable) const
  28. {
  29. #define __BYTECODE_OP(op) \
  30. case Instruction::Type::op: \
  31. return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
  32. switch (type()) {
  33. ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
  34. default:
  35. VERIFY_NOT_REACHED();
  36. }
  37. #undef __BYTECODE_OP
  38. }
  39. }
  40. namespace JS::Bytecode::Op {
  41. static ThrowCompletionOr<void> put_by_property_key(Object* object, Value value, PropertyKey name, Bytecode::Interpreter& interpreter, PropertyKind kind)
  42. {
  43. auto& vm = interpreter.vm();
  44. if (kind == PropertyKind::Getter || kind == PropertyKind::Setter) {
  45. // The generator should only pass us functions for getters and setters.
  46. VERIFY(value.is_function());
  47. }
  48. switch (kind) {
  49. case PropertyKind::Getter: {
  50. auto& function = value.as_function();
  51. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  52. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("get {}", name));
  53. object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
  54. break;
  55. }
  56. case PropertyKind::Setter: {
  57. auto& function = value.as_function();
  58. if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
  59. static_cast<ECMAScriptFunctionObject*>(&function)->set_name(String::formatted("set {}", name));
  60. object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
  61. break;
  62. }
  63. case PropertyKind::KeyValue: {
  64. bool succeeded = TRY(object->internal_set(name, interpreter.accumulator(), object));
  65. if (!succeeded && vm.in_strict_mode())
  66. return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, interpreter.accumulator().to_string_without_side_effects());
  67. break;
  68. }
  69. case PropertyKind::Spread:
  70. TRY(object->copy_data_properties(vm, value, {}));
  71. break;
  72. case PropertyKind::ProtoSetter:
  73. if (value.is_object() || value.is_null())
  74. MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
  75. break;
  76. }
  77. return {};
  78. }
  79. ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter& interpreter) const
  80. {
  81. interpreter.accumulator() = interpreter.reg(m_src);
  82. return {};
  83. }
  84. ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
  85. {
  86. interpreter.accumulator() = m_value;
  87. return {};
  88. }
  89. ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter& interpreter) const
  90. {
  91. interpreter.reg(m_dst) = interpreter.accumulator();
  92. return {};
  93. }
  94. static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2)
  95. {
  96. return Value(!TRY(is_loosely_equal(vm, src1, src2)));
  97. }
  98. static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2)
  99. {
  100. return Value(TRY(is_loosely_equal(vm, src1, src2)));
  101. }
  102. static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2)
  103. {
  104. return Value(!is_strictly_equal(src1, src2));
  105. }
  106. static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2)
  107. {
  108. return Value(is_strictly_equal(src1, src2));
  109. }
  110. #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
  111. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  112. { \
  113. auto& vm = interpreter.vm(); \
  114. auto lhs = interpreter.reg(m_lhs_reg); \
  115. auto rhs = interpreter.accumulator(); \
  116. interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \
  117. return {}; \
  118. } \
  119. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  120. { \
  121. return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
  122. }
  123. JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
  124. static ThrowCompletionOr<Value> not_(VM&, Value value)
  125. {
  126. return Value(!value.to_boolean());
  127. }
  128. static ThrowCompletionOr<Value> typeof_(VM& vm, Value value)
  129. {
  130. return Value(js_string(vm, value.typeof()));
  131. }
  132. #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
  133. ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
  134. { \
  135. auto& vm = interpreter.vm(); \
  136. interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \
  137. return {}; \
  138. } \
  139. String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
  140. { \
  141. return #OpTitleCase; \
  142. }
  143. JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
  144. ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
  145. {
  146. interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
  147. return {};
  148. }
  149. ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
  150. {
  151. auto* array = MUST(Array::create(interpreter.realm(), 0));
  152. for (size_t i = 0; i < m_element_count; i++) {
  153. auto& value = interpreter.reg(Register(m_elements[0].index() + i));
  154. array->indexed_properties().put(i, value, default_attributes);
  155. }
  156. interpreter.accumulator() = array;
  157. return {};
  158. }
  159. ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const
  160. {
  161. // Note: This OpCode is used to construct array literals and argument arrays for calls,
  162. // containing at least one spread element,
  163. // Iterating over such a spread element to unpack it has to be visible by
  164. // the user courtesy of
  165. // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
  166. // SpreadElement : ... AssignmentExpression
  167. // 1. Let spreadRef be ? Evaluation of AssignmentExpression.
  168. // 2. Let spreadObj be ? GetValue(spreadRef).
  169. // 3. Let iteratorRecord be ? GetIterator(spreadObj).
  170. // 4. Repeat,
  171. // a. Let next be ? IteratorStep(iteratorRecord).
  172. // b. If next is false, return nextIndex.
  173. // c. Let nextValue be ? IteratorValue(next).
  174. // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
  175. // e. Set nextIndex to nextIndex + 1.
  176. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  177. // ArgumentList : ... AssignmentExpression
  178. // 1. Let list be a new empty List.
  179. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  180. // 3. Let spreadObj be ? GetValue(spreadRef).
  181. // 4. Let iteratorRecord be ? GetIterator(spreadObj).
  182. // 5. Repeat,
  183. // a. Let next be ? IteratorStep(iteratorRecord).
  184. // b. If next is false, return list.
  185. // c. Let nextArg be ? IteratorValue(next).
  186. // d. Append nextArg to list.
  187. // ArgumentList : ArgumentList , ... AssignmentExpression
  188. // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
  189. // 2. Let spreadRef be ? Evaluation of AssignmentExpression.
  190. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
  191. // 4. Repeat,
  192. // a. Let next be ? IteratorStep(iteratorRecord).
  193. // b. If next is false, return precedingArgs.
  194. // c. Let nextArg be ? IteratorValue(next).
  195. // d. Append nextArg to precedingArgs.
  196. auto& vm = interpreter.vm();
  197. // Note: We know from codegen, that lhs is a plain array with only indexed properties
  198. auto& lhs = interpreter.reg(m_lhs).as_array();
  199. auto lhs_size = lhs.indexed_properties().array_like_size();
  200. auto rhs = interpreter.accumulator();
  201. if (m_is_spread) {
  202. // ...rhs
  203. size_t i = lhs_size;
  204. TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> {
  205. lhs.indexed_properties().put(i, iterator_value, default_attributes);
  206. ++i;
  207. return {};
  208. }));
  209. } else {
  210. lhs.indexed_properties().put(lhs_size, rhs, default_attributes);
  211. }
  212. return {};
  213. }
  214. // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
  215. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
  216. static Object* iterator_to_object(VM& vm, Iterator iterator)
  217. {
  218. auto& realm = *vm.current_realm();
  219. auto* object = Object::create(realm, nullptr);
  220. object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
  221. object->define_direct_property(vm.names.next, iterator.next_method, 0);
  222. object->define_direct_property(vm.names.done, Value(iterator.done), 0);
  223. return object;
  224. }
  225. static Iterator object_to_iterator(VM& vm, Object& object)
  226. {
  227. return Iterator {
  228. .iterator = &MUST(object.get(vm.names.iterator)).as_object(),
  229. .next_method = MUST(object.get(vm.names.next)),
  230. .done = MUST(object.get(vm.names.done)).as_bool()
  231. };
  232. }
  233. ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
  234. {
  235. auto& vm = interpreter.vm();
  236. auto iterator_object = TRY(interpreter.accumulator().to_object(vm));
  237. auto iterator = object_to_iterator(vm, *iterator_object);
  238. auto* array = MUST(Array::create(interpreter.realm(), 0));
  239. size_t index = 0;
  240. while (true) {
  241. auto* iterator_result = TRY(iterator_next(vm, iterator));
  242. auto complete = TRY(iterator_complete(vm, *iterator_result));
  243. if (complete) {
  244. interpreter.accumulator() = array;
  245. return {};
  246. }
  247. auto value = TRY(iterator_value(vm, *iterator_result));
  248. MUST(array->create_data_property_or_throw(index, value));
  249. index++;
  250. }
  251. return {};
  252. }
  253. ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const
  254. {
  255. interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
  256. return {};
  257. }
  258. ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
  259. {
  260. auto& vm = interpreter.vm();
  261. auto& realm = *vm.current_realm();
  262. interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype());
  263. return {};
  264. }
  265. ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
  266. {
  267. auto& vm = interpreter.vm();
  268. auto source = interpreter.current_executable().get_string(m_source_index);
  269. auto flags = interpreter.current_executable().get_string(m_flags_index);
  270. interpreter.accumulator() = TRY(regexp_create(vm, js_string(vm, source), js_string(vm, flags)));
  271. return {};
  272. }
  273. ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
  274. {
  275. auto& vm = interpreter.vm();
  276. auto& realm = *vm.current_realm();
  277. auto* from_object = TRY(interpreter.reg(m_from_object).to_object(vm));
  278. auto* to_object = Object::create(realm, realm.intrinsics().object_prototype());
  279. HashTable<Value, ValueTraits> excluded_names;
  280. for (size_t i = 0; i < m_excluded_names_count; ++i)
  281. excluded_names.set(interpreter.reg(m_excluded_names[i]));
  282. auto own_keys = TRY(from_object->internal_own_property_keys());
  283. for (auto& key : own_keys) {
  284. if (!excluded_names.contains(key)) {
  285. auto property_key = TRY(key.to_property_key(vm));
  286. auto property_value = TRY(from_object->get(property_key));
  287. to_object->define_direct_property(property_key, property_value, JS::default_attributes);
  288. }
  289. }
  290. interpreter.accumulator() = to_object;
  291. return {};
  292. }
  293. ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
  294. {
  295. auto& vm = interpreter.vm();
  296. interpreter.reg(m_lhs) = TRY(add(vm, interpreter.reg(m_lhs), interpreter.accumulator()));
  297. return {};
  298. }
  299. ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  300. {
  301. auto& vm = interpreter.vm();
  302. auto get_reference = [&]() -> ThrowCompletionOr<Reference> {
  303. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  304. if (m_cached_environment_coordinate.has_value()) {
  305. Environment* environment = nullptr;
  306. if (m_cached_environment_coordinate->index == EnvironmentCoordinate::global_marker) {
  307. environment = &interpreter.vm().current_realm()->global_environment();
  308. } else {
  309. environment = vm.running_execution_context().lexical_environment;
  310. for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
  311. environment = environment->outer_environment();
  312. VERIFY(environment);
  313. VERIFY(environment->is_declarative_environment());
  314. }
  315. if (!environment->is_permanently_screwed_by_eval()) {
  316. return Reference { *environment, string, vm.in_strict_mode(), m_cached_environment_coordinate };
  317. }
  318. m_cached_environment_coordinate = {};
  319. }
  320. auto reference = TRY(vm.resolve_binding(string));
  321. if (reference.environment_coordinate().has_value())
  322. m_cached_environment_coordinate = reference.environment_coordinate();
  323. return reference;
  324. };
  325. auto reference = TRY(get_reference());
  326. interpreter.accumulator() = TRY(reference.get_value(vm));
  327. return {};
  328. }
  329. ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  330. {
  331. auto& vm = interpreter.vm();
  332. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  333. auto reference = TRY(vm.resolve_binding(string));
  334. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  335. return {};
  336. }
  337. ThrowCompletionOr<void> CreateEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  338. {
  339. auto make_and_swap_envs = [&](auto*& old_environment) {
  340. Environment* environment = new_declarative_environment(*old_environment);
  341. swap(old_environment, environment);
  342. return environment;
  343. };
  344. if (m_mode == EnvironmentMode::Lexical)
  345. interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment));
  346. else if (m_mode == EnvironmentMode::Var)
  347. interpreter.saved_variable_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().variable_environment));
  348. return {};
  349. }
  350. ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  351. {
  352. auto& vm = interpreter.vm();
  353. auto& old_environment = vm.running_execution_context().lexical_environment;
  354. interpreter.saved_lexical_environment_stack().append(old_environment);
  355. auto object = TRY(interpreter.accumulator().to_object(vm));
  356. vm.running_execution_context().lexical_environment = new_object_environment(*object, true, old_environment);
  357. return {};
  358. }
  359. ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  360. {
  361. auto& vm = interpreter.vm();
  362. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  363. if (m_mode == EnvironmentMode::Lexical) {
  364. VERIFY(!m_is_global);
  365. // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
  366. // Instead of crashing in there, we'll just raise an exception here.
  367. if (TRY(vm.lexical_environment()->has_binding(name)))
  368. return vm.throw_completion<InternalError>(String::formatted("Lexical environment already has binding '{}'", name));
  369. if (m_is_immutable)
  370. vm.lexical_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  371. else
  372. vm.lexical_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  373. } else {
  374. if (!m_is_global) {
  375. if (m_is_immutable)
  376. vm.variable_environment()->create_immutable_binding(vm, name, vm.in_strict_mode());
  377. else
  378. vm.variable_environment()->create_mutable_binding(vm, name, vm.in_strict_mode());
  379. } else {
  380. // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
  381. // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
  382. verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
  383. }
  384. }
  385. return {};
  386. }
  387. ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  388. {
  389. auto& vm = interpreter.vm();
  390. auto const& name = interpreter.current_executable().get_identifier(m_identifier);
  391. auto environment = m_mode == EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
  392. auto reference = TRY(vm.resolve_binding(name, environment));
  393. switch (m_initialization_mode) {
  394. case InitializationMode::Initialize:
  395. TRY(reference.initialize_referenced_binding(vm, interpreter.accumulator()));
  396. break;
  397. case InitializationMode::Set:
  398. TRY(reference.put_value(vm, interpreter.accumulator()));
  399. break;
  400. case InitializationMode::InitializeOrSet:
  401. VERIFY(reference.is_environment_reference());
  402. VERIFY(reference.base_environment().is_declarative_environment());
  403. TRY(static_cast<DeclarativeEnvironment&>(reference.base_environment()).initialize_or_set_mutable_binding(vm, name, interpreter.accumulator()));
  404. break;
  405. }
  406. return {};
  407. }
  408. ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const
  409. {
  410. auto& vm = interpreter.vm();
  411. auto* object = TRY(interpreter.accumulator().to_object(vm));
  412. interpreter.accumulator() = TRY(object->get(interpreter.current_executable().get_identifier(m_property)));
  413. return {};
  414. }
  415. ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const
  416. {
  417. auto& vm = interpreter.vm();
  418. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  419. PropertyKey name = interpreter.current_executable().get_identifier(m_property);
  420. auto value = interpreter.accumulator();
  421. return put_by_property_key(object, value, name, interpreter, m_kind);
  422. }
  423. ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const
  424. {
  425. auto& vm = interpreter.vm();
  426. auto* object = TRY(interpreter.accumulator().to_object(vm));
  427. auto const& identifier = interpreter.current_executable().get_identifier(m_property);
  428. bool strict = vm.in_strict_mode();
  429. auto reference = Reference { object, identifier, {}, strict };
  430. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  431. return {};
  432. };
  433. ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter& interpreter) const
  434. {
  435. interpreter.jump(*m_true_target);
  436. return {};
  437. }
  438. ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
  439. {
  440. auto& vm = interpreter.vm();
  441. interpreter.accumulator() = TRY(vm.resolve_this_binding());
  442. return {};
  443. }
  444. ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const
  445. {
  446. interpreter.accumulator() = interpreter.vm().get_new_target();
  447. return {};
  448. }
  449. void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  450. {
  451. if (m_true_target.has_value() && &m_true_target->block() == &from)
  452. m_true_target = Label { to };
  453. if (m_false_target.has_value() && &m_false_target->block() == &from)
  454. m_false_target = Label { to };
  455. }
  456. ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
  457. {
  458. VERIFY(m_true_target.has_value());
  459. VERIFY(m_false_target.has_value());
  460. auto result = interpreter.accumulator();
  461. if (result.to_boolean())
  462. interpreter.jump(m_true_target.value());
  463. else
  464. interpreter.jump(m_false_target.value());
  465. return {};
  466. }
  467. ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
  468. {
  469. VERIFY(m_true_target.has_value());
  470. VERIFY(m_false_target.has_value());
  471. auto result = interpreter.accumulator();
  472. if (result.is_nullish())
  473. interpreter.jump(m_true_target.value());
  474. else
  475. interpreter.jump(m_false_target.value());
  476. return {};
  477. }
  478. ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
  479. {
  480. VERIFY(m_true_target.has_value());
  481. VERIFY(m_false_target.has_value());
  482. auto result = interpreter.accumulator();
  483. if (result.is_undefined())
  484. interpreter.jump(m_true_target.value());
  485. else
  486. interpreter.jump(m_false_target.value());
  487. return {};
  488. }
  489. // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
  490. static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter)
  491. {
  492. // Note: Any spreading and actual evaluation is handled in preceding opcodes
  493. // Note: The spec uses the concept of a list, while we create a temporary array
  494. // in the preceding opcodes, so we have to convert in a manner that is not
  495. // visible to the user
  496. auto& vm = interpreter.vm();
  497. MarkedVector<Value> argument_values { vm.heap() };
  498. auto arguments = interpreter.accumulator();
  499. if (!(arguments.is_object() && is<Array>(arguments.as_object()))) {
  500. dbgln("Call arguments are not an array, but: {}", arguments.to_string_without_side_effects());
  501. dbgln("PC: {}[{:4x}]", interpreter.current_block().name(), interpreter.pc());
  502. interpreter.current_executable().dump();
  503. VERIFY_NOT_REACHED();
  504. }
  505. auto& argument_array = arguments.as_array();
  506. auto array_length = argument_array.indexed_properties().array_like_size();
  507. argument_values.ensure_capacity(array_length);
  508. for (size_t i = 0; i < array_length; ++i) {
  509. if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
  510. argument_values.append(maybe_value.release_value().value);
  511. else
  512. argument_values.append(js_undefined());
  513. }
  514. return argument_values;
  515. }
  516. Completion Call::throw_type_error_for_callee(Bytecode::Interpreter& interpreter, StringView callee_type) const
  517. {
  518. auto callee = interpreter.reg(m_callee);
  519. if (m_expression_string.has_value())
  520. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(m_expression_string->value()));
  521. return interpreter.vm().throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type);
  522. }
  523. ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const
  524. {
  525. auto& vm = interpreter.vm();
  526. auto callee = interpreter.reg(m_callee);
  527. if (m_type == CallType::Call && !callee.is_function())
  528. return throw_type_error_for_callee(interpreter, "function"sv);
  529. if (m_type == CallType::Construct && !callee.is_constructor())
  530. return throw_type_error_for_callee(interpreter, "constructor"sv);
  531. auto& function = callee.as_function();
  532. auto this_value = interpreter.reg(m_this_value);
  533. auto argument_values = argument_list_evaluation(interpreter);
  534. Value return_value;
  535. if (m_type == CallType::Call)
  536. return_value = TRY(call(vm, function, this_value, move(argument_values)));
  537. else
  538. return_value = TRY(construct(vm, function, move(argument_values)));
  539. interpreter.accumulator() = return_value;
  540. return {};
  541. }
  542. // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
  543. ThrowCompletionOr<void> SuperCall::execute_impl(Bytecode::Interpreter& interpreter) const
  544. {
  545. auto& vm = interpreter.vm();
  546. // 1. Let newTarget be GetNewTarget().
  547. auto new_target = vm.get_new_target();
  548. // 2. Assert: Type(newTarget) is Object.
  549. VERIFY(new_target.is_object());
  550. // 3. Let func be GetSuperConstructor().
  551. auto* func = get_super_constructor(vm);
  552. // 4. Let argList be ? ArgumentListEvaluation of Arguments.
  553. MarkedVector<Value> arg_list { vm.heap() };
  554. if (m_is_synthetic) {
  555. auto const& value = interpreter.accumulator();
  556. VERIFY(value.is_object() && is<Array>(value.as_object()));
  557. auto const& array_value = static_cast<Array const&>(value.as_object());
  558. auto length = MUST(length_of_array_like(vm, array_value));
  559. for (size_t i = 0; i < length; ++i)
  560. arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
  561. } else {
  562. arg_list = argument_list_evaluation(interpreter);
  563. }
  564. // 5. If IsConstructor(func) is false, throw a TypeError exception.
  565. if (!Value(func).is_constructor())
  566. return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
  567. // 6. Let result be ? Construct(func, argList, newTarget).
  568. auto* result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
  569. // 7. Let thisER be GetThisEnvironment().
  570. auto& this_environment = verify_cast<FunctionEnvironment>(get_this_environment(vm));
  571. // 8. Perform ? thisER.BindThisValue(result).
  572. TRY(this_environment.bind_this_value(vm, result));
  573. // 9. Let F be thisER.[[FunctionObject]].
  574. auto& f = this_environment.function_object();
  575. // 10. Assert: F is an ECMAScript function object.
  576. // NOTE: This is implied by the strong C++ type.
  577. // 11. Perform ? InitializeInstanceElements(result, F).
  578. TRY(vm.initialize_instance_elements(*result, f));
  579. // 12. Return result.
  580. interpreter.accumulator() = result;
  581. return {};
  582. }
  583. ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
  584. {
  585. auto& vm = interpreter.vm();
  586. interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.realm(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.contains_direct_call_to_eval(), m_function_node.is_arrow_function());
  587. return {};
  588. }
  589. ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const
  590. {
  591. interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
  592. return {};
  593. }
  594. ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const
  595. {
  596. auto& vm = interpreter.vm();
  597. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  598. if (old_value.is_number())
  599. interpreter.accumulator() = Value(old_value.as_double() + 1);
  600. else
  601. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
  602. return {};
  603. }
  604. ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
  605. {
  606. auto& vm = interpreter.vm();
  607. auto old_value = TRY(interpreter.accumulator().to_numeric(vm));
  608. if (old_value.is_number())
  609. interpreter.accumulator() = Value(old_value.as_double() - 1);
  610. else
  611. interpreter.accumulator() = js_bigint(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
  612. return {};
  613. }
  614. ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const
  615. {
  616. return throw_completion(interpreter.accumulator());
  617. }
  618. ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  619. {
  620. interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
  621. interpreter.jump(m_entry_point);
  622. return {};
  623. }
  624. void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  625. {
  626. if (&m_entry_point.block() == &from)
  627. m_entry_point = Label { to };
  628. if (m_handler_target.has_value() && &m_handler_target->block() == &from)
  629. m_handler_target = Label { to };
  630. if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
  631. m_finalizer_target = Label { to };
  632. }
  633. ThrowCompletionOr<void> FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  634. {
  635. interpreter.leave_unwind_context();
  636. interpreter.jump(m_next_target);
  637. return {};
  638. }
  639. void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  640. {
  641. if (&m_next_target.block() == &from)
  642. m_next_target = Label { to };
  643. }
  644. ThrowCompletionOr<void> LeaveEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  645. {
  646. if (m_mode == EnvironmentMode::Lexical)
  647. interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
  648. if (m_mode == EnvironmentMode::Var)
  649. interpreter.vm().running_execution_context().variable_environment = interpreter.saved_variable_environment_stack().take_last();
  650. return {};
  651. }
  652. ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
  653. {
  654. interpreter.leave_unwind_context();
  655. return {};
  656. }
  657. ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
  658. {
  659. return interpreter.continue_pending_unwind(m_resume_target);
  660. }
  661. void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  662. {
  663. if (&m_resume_target.block() == &from)
  664. m_resume_target = Label { to };
  665. }
  666. ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
  667. {
  668. auto* environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment());
  669. interpreter.vm().running_execution_context().lexical_environment = environment;
  670. interpreter.vm().running_execution_context().variable_environment = environment;
  671. return {};
  672. }
  673. ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const
  674. {
  675. auto yielded_value = interpreter.accumulator().value_or(js_undefined());
  676. auto object = Object::create(interpreter.realm(), nullptr);
  677. object->define_direct_property("result", yielded_value, JS::default_attributes);
  678. if (m_continuation_label.has_value())
  679. object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
  680. else
  681. object->define_direct_property("continuation", Value(0), JS::default_attributes);
  682. interpreter.do_return(object);
  683. return {};
  684. }
  685. void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
  686. {
  687. if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
  688. m_continuation_label = Label { to };
  689. }
  690. ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  691. {
  692. auto& vm = interpreter.vm();
  693. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  694. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  695. interpreter.accumulator() = TRY(object->get(property_key));
  696. return {};
  697. }
  698. ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  699. {
  700. auto& vm = interpreter.vm();
  701. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  702. auto property_key = TRY(interpreter.reg(m_property).to_property_key(vm));
  703. return put_by_property_key(object, interpreter.accumulator(), property_key, interpreter, m_kind);
  704. }
  705. ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const
  706. {
  707. auto& vm = interpreter.vm();
  708. auto* object = TRY(interpreter.reg(m_base).to_object(vm));
  709. auto property_key = TRY(interpreter.accumulator().to_property_key(vm));
  710. bool strict = vm.in_strict_mode();
  711. auto reference = Reference { object, property_key, {}, strict };
  712. interpreter.accumulator() = Value(TRY(reference.delete_(vm)));
  713. return {};
  714. }
  715. ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  716. {
  717. auto& vm = interpreter.vm();
  718. auto iterator = TRY(get_iterator(vm, interpreter.accumulator()));
  719. interpreter.accumulator() = iterator_to_object(vm, iterator);
  720. return {};
  721. }
  722. // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
  723. ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const
  724. {
  725. // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
  726. // 1- Returned property keys do not include keys that are Symbols
  727. // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
  728. // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
  729. // 4- A property name will be returned by the iterator's next method at most once in any enumeration.
  730. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
  731. // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
  732. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
  733. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
  734. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
  735. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
  736. // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
  737. // Invariants 1 and 6 through 9 are implemented in `enumerable_own_property_names`, which implements the EnumerableOwnPropertyNames AO.
  738. auto& vm = interpreter.vm();
  739. auto* object = TRY(interpreter.accumulator().to_object(vm));
  740. // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
  741. // so we just keep the order consistent anyway.
  742. OrderedHashTable<PropertyKey> properties;
  743. HashTable<Object*> seen_objects;
  744. // Collect all keys immediately (invariant no. 5)
  745. for (auto* object_to_check = object; object_to_check && !seen_objects.contains(object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
  746. seen_objects.set(object_to_check);
  747. for (auto& key : TRY(object_to_check->enumerable_own_property_names(Object::PropertyKind::Key))) {
  748. properties.set(TRY(PropertyKey::from_value(vm, key)));
  749. }
  750. }
  751. Iterator iterator {
  752. .iterator = object,
  753. .next_method = NativeFunction::create(
  754. interpreter.realm(),
  755. [seen_items = HashTable<PropertyKey>(), items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
  756. auto& realm = *vm.current_realm();
  757. auto iterated_object_value = vm.this_value();
  758. if (!iterated_object_value.is_object())
  759. return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next");
  760. auto& iterated_object = iterated_object_value.as_object();
  761. auto* result_object = Object::create(realm, nullptr);
  762. while (true) {
  763. if (items.is_empty()) {
  764. result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
  765. return result_object;
  766. }
  767. auto it = items.begin();
  768. auto key = *it;
  769. items.remove(it);
  770. // If the key was already seen, skip over it (invariant no. 4)
  771. auto result = seen_items.set(key);
  772. if (result != AK::HashSetResult::InsertedNewEntry)
  773. continue;
  774. // If the property is deleted, don't include it (invariant no. 2)
  775. if (!TRY(iterated_object.has_property(key)))
  776. continue;
  777. result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
  778. if (key.is_number())
  779. result_object->define_direct_property(vm.names.value, JS::Value(key.as_number()), default_attributes);
  780. else if (key.is_string())
  781. result_object->define_direct_property(vm.names.value, js_string(vm, key.as_string()), default_attributes);
  782. else
  783. VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
  784. return result_object;
  785. }
  786. },
  787. 1,
  788. vm.names.next),
  789. .done = false,
  790. };
  791. interpreter.accumulator() = iterator_to_object(vm, move(iterator));
  792. return {};
  793. }
  794. ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
  795. {
  796. auto& vm = interpreter.vm();
  797. auto* iterator_object = TRY(interpreter.accumulator().to_object(vm));
  798. auto iterator = object_to_iterator(vm, *iterator_object);
  799. interpreter.accumulator() = TRY(iterator_next(vm, iterator));
  800. return {};
  801. }
  802. ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
  803. {
  804. auto& vm = interpreter.vm();
  805. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  806. auto complete = TRY(iterator_complete(vm, *iterator_result));
  807. interpreter.accumulator() = Value(complete);
  808. return {};
  809. }
  810. ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
  811. {
  812. auto& vm = interpreter.vm();
  813. auto* iterator_result = TRY(interpreter.accumulator().to_object(vm));
  814. interpreter.accumulator() = TRY(iterator_value(vm, *iterator_result));
  815. return {};
  816. }
  817. ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const
  818. {
  819. auto name = m_class_expression.name();
  820. auto scope = interpreter.ast_interpreter_scope();
  821. auto& ast_interpreter = scope.interpreter();
  822. auto* class_object = TRY(m_class_expression.class_definition_evaluation(ast_interpreter, name, name.is_null() ? ""sv : name));
  823. class_object->set_source_text(m_class_expression.source_text());
  824. interpreter.accumulator() = class_object;
  825. return {};
  826. }
  827. // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
  828. ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const
  829. {
  830. auto& vm = interpreter.vm();
  831. // 1. Let val be the result of evaluating UnaryExpression.
  832. auto const& string = interpreter.current_executable().get_identifier(m_identifier);
  833. auto reference = TRY(vm.resolve_binding(string));
  834. // 2. If val is a Reference Record, then
  835. // a. If IsUnresolvableReference(val) is true, return "undefined".
  836. if (reference.is_unresolvable()) {
  837. interpreter.accumulator() = js_string(vm, "undefined"sv);
  838. return {};
  839. }
  840. // 3. Set val to ? GetValue(val).
  841. auto value = TRY(reference.get_value(vm));
  842. // 4. NOTE: This step is replaced in section B.3.6.3.
  843. // 5. Return a String according to Table 41.
  844. interpreter.accumulator() = js_string(vm, value.typeof());
  845. return {};
  846. }
  847. String Load::to_string_impl(Bytecode::Executable const&) const
  848. {
  849. return String::formatted("Load {}", m_src);
  850. }
  851. String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
  852. {
  853. return String::formatted("LoadImmediate {}", m_value);
  854. }
  855. String Store::to_string_impl(Bytecode::Executable const&) const
  856. {
  857. return String::formatted("Store {}", m_dst);
  858. }
  859. String NewBigInt::to_string_impl(Bytecode::Executable const&) const
  860. {
  861. return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
  862. }
  863. String NewArray::to_string_impl(Bytecode::Executable const&) const
  864. {
  865. StringBuilder builder;
  866. builder.append("NewArray"sv);
  867. if (m_element_count != 0) {
  868. builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]);
  869. }
  870. return builder.to_string();
  871. }
  872. String Append::to_string_impl(Bytecode::Executable const&) const
  873. {
  874. if (m_is_spread)
  875. return String::formatted("Append lhs: **{}", m_lhs);
  876. return String::formatted("Append lhs: {}", m_lhs);
  877. }
  878. String IteratorToArray::to_string_impl(Bytecode::Executable const&) const
  879. {
  880. return "IteratorToArray";
  881. }
  882. String NewString::to_string_impl(Bytecode::Executable const& executable) const
  883. {
  884. return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
  885. }
  886. String NewObject::to_string_impl(Bytecode::Executable const&) const
  887. {
  888. return "NewObject";
  889. }
  890. String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
  891. {
  892. return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
  893. }
  894. String CopyObjectExcludingProperties::to_string_impl(Bytecode::Executable const&) const
  895. {
  896. StringBuilder builder;
  897. builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
  898. if (m_excluded_names_count != 0) {
  899. builder.append(" excluding:["sv);
  900. builder.join(", "sv, Span<Register const>(m_excluded_names, m_excluded_names_count));
  901. builder.append(']');
  902. }
  903. return builder.to_string();
  904. }
  905. String ConcatString::to_string_impl(Bytecode::Executable const&) const
  906. {
  907. return String::formatted("ConcatString {}", m_lhs);
  908. }
  909. String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
  910. {
  911. return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  912. }
  913. String DeleteVariable::to_string_impl(Bytecode::Executable const& executable) const
  914. {
  915. return String::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  916. }
  917. String CreateEnvironment::to_string_impl(Bytecode::Executable const&) const
  918. {
  919. auto mode_string = m_mode == EnvironmentMode::Lexical
  920. ? "Lexical"
  921. : "Variable";
  922. return String::formatted("CreateEnvironment mode:{}", mode_string);
  923. }
  924. String CreateVariable::to_string_impl(Bytecode::Executable const& executable) const
  925. {
  926. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  927. return String::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier));
  928. }
  929. String EnterObjectEnvironment::to_string_impl(Executable const&) const
  930. {
  931. return String::formatted("EnterObjectEnvironment");
  932. }
  933. String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
  934. {
  935. auto initialization_mode_name = m_initialization_mode == InitializationMode ::Initialize ? "Initialize"
  936. : m_initialization_mode == InitializationMode::Set ? "Set"
  937. : "InitializeOrSet";
  938. auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable";
  939. return String::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier));
  940. }
  941. String PutById::to_string_impl(Bytecode::Executable const& executable) const
  942. {
  943. auto kind = m_kind == PropertyKind::Getter
  944. ? "getter"
  945. : m_kind == PropertyKind::Setter
  946. ? "setter"
  947. : "property";
  948. return String::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property));
  949. }
  950. String GetById::to_string_impl(Bytecode::Executable const& executable) const
  951. {
  952. return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
  953. }
  954. String DeleteById::to_string_impl(Bytecode::Executable const& executable) const
  955. {
  956. return String::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property));
  957. }
  958. String Jump::to_string_impl(Bytecode::Executable const&) const
  959. {
  960. if (m_true_target.has_value())
  961. return String::formatted("Jump {}", *m_true_target);
  962. return String::formatted("Jump <empty>");
  963. }
  964. String JumpConditional::to_string_impl(Bytecode::Executable const&) const
  965. {
  966. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  967. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  968. return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
  969. }
  970. String JumpNullish::to_string_impl(Bytecode::Executable const&) const
  971. {
  972. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  973. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  974. return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
  975. }
  976. String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
  977. {
  978. auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
  979. auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
  980. return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
  981. }
  982. String Call::to_string_impl(Bytecode::Executable const& executable) const
  983. {
  984. if (m_expression_string.has_value())
  985. return String::formatted("Call callee:{}, this:{}, arguments:[...acc] ({})", m_callee, m_this_value, executable.get_string(m_expression_string.value()));
  986. return String::formatted("Call callee:{}, this:{}, arguments:[...acc]", m_callee, m_this_value);
  987. }
  988. String SuperCall::to_string_impl(Bytecode::Executable const&) const
  989. {
  990. return "SuperCall arguments:[...acc]"sv;
  991. }
  992. String NewFunction::to_string_impl(Bytecode::Executable const&) const
  993. {
  994. return "NewFunction";
  995. }
  996. String NewClass::to_string_impl(Bytecode::Executable const&) const
  997. {
  998. auto name = m_class_expression.name();
  999. return String::formatted("NewClass '{}'", name.is_null() ? ""sv : name);
  1000. }
  1001. String Return::to_string_impl(Bytecode::Executable const&) const
  1002. {
  1003. return "Return";
  1004. }
  1005. String Increment::to_string_impl(Bytecode::Executable const&) const
  1006. {
  1007. return "Increment";
  1008. }
  1009. String Decrement::to_string_impl(Bytecode::Executable const&) const
  1010. {
  1011. return "Decrement";
  1012. }
  1013. String Throw::to_string_impl(Bytecode::Executable const&) const
  1014. {
  1015. return "Throw";
  1016. }
  1017. String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1018. {
  1019. auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
  1020. auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
  1021. return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
  1022. }
  1023. String FinishUnwind::to_string_impl(Bytecode::Executable const&) const
  1024. {
  1025. return String::formatted("FinishUnwind next:{}", m_next_target);
  1026. }
  1027. String LeaveEnvironment::to_string_impl(Bytecode::Executable const&) const
  1028. {
  1029. auto mode_string = m_mode == EnvironmentMode::Lexical
  1030. ? "Lexical"
  1031. : "Variable";
  1032. return String::formatted("LeaveEnvironment env:{}", mode_string);
  1033. }
  1034. String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
  1035. {
  1036. return "LeaveUnwindContext";
  1037. }
  1038. String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
  1039. {
  1040. return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
  1041. }
  1042. String PushDeclarativeEnvironment::to_string_impl(Bytecode::Executable const& executable) const
  1043. {
  1044. StringBuilder builder;
  1045. builder.append("PushDeclarativeEnvironment"sv);
  1046. if (!m_variables.is_empty()) {
  1047. builder.append(" {"sv);
  1048. Vector<String> names;
  1049. for (auto& it : m_variables)
  1050. names.append(executable.get_string(it.key));
  1051. builder.append('}');
  1052. builder.join(", "sv, names);
  1053. }
  1054. return builder.to_string();
  1055. }
  1056. String Yield::to_string_impl(Bytecode::Executable const&) const
  1057. {
  1058. if (m_continuation_label.has_value())
  1059. return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
  1060. return String::formatted("Yield return");
  1061. }
  1062. String GetByValue::to_string_impl(Bytecode::Executable const&) const
  1063. {
  1064. return String::formatted("GetByValue base:{}", m_base);
  1065. }
  1066. String PutByValue::to_string_impl(Bytecode::Executable const&) const
  1067. {
  1068. auto kind = m_kind == PropertyKind::Getter
  1069. ? "getter"
  1070. : m_kind == PropertyKind::Setter
  1071. ? "setter"
  1072. : "property";
  1073. return String::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property);
  1074. }
  1075. String DeleteByValue::to_string_impl(Bytecode::Executable const&) const
  1076. {
  1077. return String::formatted("DeleteByValue base:{}", m_base);
  1078. }
  1079. String GetIterator::to_string_impl(Executable const&) const
  1080. {
  1081. return "GetIterator";
  1082. }
  1083. String GetObjectPropertyIterator::to_string_impl(Bytecode::Executable const&) const
  1084. {
  1085. return "GetObjectPropertyIterator";
  1086. }
  1087. String IteratorNext::to_string_impl(Executable const&) const
  1088. {
  1089. return "IteratorNext";
  1090. }
  1091. String IteratorResultDone::to_string_impl(Executable const&) const
  1092. {
  1093. return "IteratorResultDone";
  1094. }
  1095. String IteratorResultValue::to_string_impl(Executable const&) const
  1096. {
  1097. return "IteratorResultValue";
  1098. }
  1099. String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
  1100. {
  1101. return "ResolveThisBinding"sv;
  1102. }
  1103. String GetNewTarget::to_string_impl(Bytecode::Executable const&) const
  1104. {
  1105. return "GetNewTarget"sv;
  1106. }
  1107. String TypeofVariable::to_string_impl(Bytecode::Executable const& executable) const
  1108. {
  1109. return String::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
  1110. }
  1111. }