Region.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Memory/AnonymousVMObject.h>
  11. #include <Kernel/Memory/MemoryManager.h>
  12. #include <Kernel/Memory/PageDirectory.h>
  13. #include <Kernel/Memory/Region.h>
  14. #include <Kernel/Memory/SharedInodeVMObject.h>
  15. #include <Kernel/Panic.h>
  16. #include <Kernel/Process.h>
  17. #include <Kernel/Thread.h>
  18. namespace Kernel::Memory {
  19. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : m_range(range)
  21. , m_offset_in_vmobject(offset_in_vmobject)
  22. , m_vmobject(move(vmobject))
  23. , m_name(move(name))
  24. , m_access(access | ((access & 0x7) << 4))
  25. , m_shared(shared)
  26. , m_cacheable(cacheable == Cacheable::Yes)
  27. {
  28. VERIFY(m_range.base().is_page_aligned());
  29. VERIFY(m_range.size());
  30. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  31. m_vmobject->add_region(*this);
  32. MM.register_region(*this);
  33. }
  34. Region::~Region()
  35. {
  36. m_vmobject->remove_region(*this);
  37. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  38. // Unmapping the region will give the VM back to the VirtualRangeAllocator, so an interrupt handler would
  39. // find the address<->region mappings in an invalid state there.
  40. ScopedSpinLock lock(s_mm_lock);
  41. if (m_page_directory) {
  42. unmap(ShouldDeallocateVirtualRange::Yes);
  43. VERIFY(!m_page_directory);
  44. }
  45. MM.unregister_region(*this);
  46. }
  47. OwnPtr<Region> Region::clone()
  48. {
  49. VERIFY(Process::current());
  50. ScopedSpinLock lock(s_mm_lock);
  51. if (m_shared) {
  52. VERIFY(!m_stack);
  53. if (vmobject().is_inode())
  54. VERIFY(vmobject().is_shared_inode());
  55. // Create a new region backed by the same VMObject.
  56. auto region = Region::try_create_user_accessible(
  57. m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  58. if (!region) {
  59. dbgln("Region::clone: Unable to allocate new Region");
  60. return nullptr;
  61. }
  62. region->set_mmap(m_mmap);
  63. region->set_shared(m_shared);
  64. region->set_syscall_region(is_syscall_region());
  65. return region;
  66. }
  67. if (vmobject().is_inode())
  68. VERIFY(vmobject().is_private_inode());
  69. auto vmobject_clone = vmobject().try_clone();
  70. if (!vmobject_clone)
  71. return {};
  72. // Set up a COW region. The parent (this) region becomes COW as well!
  73. remap();
  74. auto clone_region = Region::try_create_user_accessible(
  75. m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  76. if (!clone_region) {
  77. dbgln("Region::clone: Unable to allocate new Region for COW");
  78. return nullptr;
  79. }
  80. if (m_stack) {
  81. VERIFY(is_readable());
  82. VERIFY(is_writable());
  83. VERIFY(vmobject().is_anonymous());
  84. clone_region->set_stack(true);
  85. }
  86. clone_region->set_syscall_region(is_syscall_region());
  87. clone_region->set_mmap(m_mmap);
  88. return clone_region;
  89. }
  90. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  91. {
  92. if (m_vmobject.ptr() == obj.ptr())
  93. return;
  94. m_vmobject->remove_region(*this);
  95. m_vmobject = move(obj);
  96. m_vmobject->add_region(*this);
  97. }
  98. size_t Region::cow_pages() const
  99. {
  100. if (!vmobject().is_anonymous())
  101. return 0;
  102. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  103. }
  104. size_t Region::amount_dirty() const
  105. {
  106. if (!vmobject().is_inode())
  107. return amount_resident();
  108. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  109. }
  110. size_t Region::amount_resident() const
  111. {
  112. size_t bytes = 0;
  113. for (size_t i = 0; i < page_count(); ++i) {
  114. auto* page = physical_page(i);
  115. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  116. bytes += PAGE_SIZE;
  117. }
  118. return bytes;
  119. }
  120. size_t Region::amount_shared() const
  121. {
  122. size_t bytes = 0;
  123. for (size_t i = 0; i < page_count(); ++i) {
  124. auto* page = physical_page(i);
  125. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  126. bytes += PAGE_SIZE;
  127. }
  128. return bytes;
  129. }
  130. OwnPtr<Region> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  131. {
  132. auto region = adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  133. if (!region)
  134. return nullptr;
  135. return region;
  136. }
  137. OwnPtr<Region> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  138. {
  139. return adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  140. }
  141. bool Region::should_cow(size_t page_index) const
  142. {
  143. if (!vmobject().is_anonymous())
  144. return false;
  145. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  146. }
  147. void Region::set_should_cow(size_t page_index, bool cow)
  148. {
  149. VERIFY(!m_shared);
  150. if (vmobject().is_anonymous())
  151. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  152. }
  153. bool Region::map_individual_page_impl(size_t page_index)
  154. {
  155. VERIFY(m_page_directory->get_lock().own_lock());
  156. auto page_vaddr = vaddr_from_page_index(page_index);
  157. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  158. if (is_mmap() && !user_allowed) {
  159. PANIC("About to map mmap'ed page at a kernel address");
  160. }
  161. // NOTE: We have to take the MM lock for PTE's to stay valid while we use them.
  162. ScopedSpinLock mm_locker(s_mm_lock);
  163. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  164. if (!pte)
  165. return false;
  166. auto* page = physical_page(page_index);
  167. if (!page || (!is_readable() && !is_writable())) {
  168. pte->clear();
  169. } else {
  170. pte->set_cache_disabled(!m_cacheable);
  171. pte->set_physical_page_base(page->paddr().get());
  172. pte->set_present(true);
  173. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  174. pte->set_writable(false);
  175. else
  176. pte->set_writable(is_writable());
  177. if (Processor::current().has_feature(CPUFeature::NX))
  178. pte->set_execute_disabled(!is_executable());
  179. pte->set_user_allowed(user_allowed);
  180. }
  181. return true;
  182. }
  183. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  184. {
  185. ScopedSpinLock lock(vmobject().m_lock);
  186. if (!m_page_directory)
  187. return true; // not an error, region may have not yet mapped it
  188. if (!translate_vmobject_page(page_index))
  189. return true; // not an error, region doesn't map this page
  190. ScopedSpinLock page_lock(m_page_directory->get_lock());
  191. VERIFY(physical_page(page_index));
  192. bool success = map_individual_page_impl(page_index);
  193. if (with_flush)
  194. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  195. return success;
  196. }
  197. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  198. {
  199. auto& vmobject = this->vmobject();
  200. bool success = true;
  201. vmobject.for_each_region([&](auto& region) {
  202. if (!region.do_remap_vmobject_page(page_index, with_flush))
  203. success = false;
  204. });
  205. return success;
  206. }
  207. void Region::unmap(ShouldDeallocateVirtualRange deallocate_range)
  208. {
  209. if (!m_page_directory)
  210. return;
  211. ScopedSpinLock page_lock(m_page_directory->get_lock());
  212. ScopedSpinLock lock(s_mm_lock);
  213. size_t count = page_count();
  214. for (size_t i = 0; i < count; ++i) {
  215. auto vaddr = vaddr_from_page_index(i);
  216. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  217. }
  218. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  219. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  220. m_page_directory->range_allocator().deallocate(range());
  221. }
  222. m_page_directory = nullptr;
  223. }
  224. void Region::set_page_directory(PageDirectory& page_directory)
  225. {
  226. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  227. VERIFY(s_mm_lock.own_lock());
  228. m_page_directory = page_directory;
  229. }
  230. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  231. {
  232. ScopedSpinLock page_lock(page_directory.get_lock());
  233. ScopedSpinLock lock(s_mm_lock);
  234. // FIXME: Find a better place for this sanity check(?)
  235. if (is_user() && !is_shared()) {
  236. VERIFY(!vmobject().is_shared_inode());
  237. }
  238. set_page_directory(page_directory);
  239. size_t page_index = 0;
  240. while (page_index < page_count()) {
  241. if (!map_individual_page_impl(page_index))
  242. break;
  243. ++page_index;
  244. }
  245. if (page_index > 0) {
  246. if (should_flush_tlb == ShouldFlushTLB::Yes)
  247. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  248. return page_index == page_count();
  249. }
  250. return false;
  251. }
  252. void Region::remap()
  253. {
  254. VERIFY(m_page_directory);
  255. map(*m_page_directory);
  256. }
  257. PageFaultResponse Region::handle_fault(PageFault const& fault)
  258. {
  259. auto page_index_in_region = page_index_from_address(fault.vaddr());
  260. if (fault.type() == PageFault::Type::PageNotPresent) {
  261. if (fault.is_read() && !is_readable()) {
  262. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  263. return PageFaultResponse::ShouldCrash;
  264. }
  265. if (fault.is_write() && !is_writable()) {
  266. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  267. return PageFaultResponse::ShouldCrash;
  268. }
  269. if (vmobject().is_inode()) {
  270. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  271. return handle_inode_fault(page_index_in_region);
  272. }
  273. auto& page_slot = physical_page_slot(page_index_in_region);
  274. if (page_slot->is_lazy_committed_page()) {
  275. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  276. VERIFY(m_vmobject->is_anonymous());
  277. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  278. remap_vmobject_page(page_index_in_vmobject);
  279. return PageFaultResponse::Continue;
  280. }
  281. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  282. return PageFaultResponse::ShouldCrash;
  283. }
  284. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  285. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  286. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  287. auto* phys_page = physical_page(page_index_in_region);
  288. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  289. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  290. return handle_zero_fault(page_index_in_region);
  291. }
  292. return handle_cow_fault(page_index_in_region);
  293. }
  294. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  295. return PageFaultResponse::ShouldCrash;
  296. }
  297. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  298. {
  299. VERIFY_INTERRUPTS_DISABLED();
  300. VERIFY(vmobject().is_anonymous());
  301. auto& page_slot = physical_page_slot(page_index_in_region);
  302. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  303. ScopedSpinLock locker(vmobject().m_lock);
  304. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  305. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  306. if (!remap_vmobject_page(page_index_in_vmobject))
  307. return PageFaultResponse::OutOfMemory;
  308. return PageFaultResponse::Continue;
  309. }
  310. auto current_thread = Thread::current();
  311. if (current_thread != nullptr)
  312. current_thread->did_zero_fault();
  313. if (page_slot->is_lazy_committed_page()) {
  314. VERIFY(m_vmobject->is_anonymous());
  315. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  316. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  317. } else {
  318. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  319. if (page_slot.is_null()) {
  320. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  321. return PageFaultResponse::OutOfMemory;
  322. }
  323. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  324. }
  325. if (!remap_vmobject_page(page_index_in_vmobject)) {
  326. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  327. return PageFaultResponse::OutOfMemory;
  328. }
  329. return PageFaultResponse::Continue;
  330. }
  331. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  332. {
  333. VERIFY_INTERRUPTS_DISABLED();
  334. auto current_thread = Thread::current();
  335. if (current_thread)
  336. current_thread->did_cow_fault();
  337. if (!vmobject().is_anonymous())
  338. return PageFaultResponse::ShouldCrash;
  339. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  340. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  341. if (!remap_vmobject_page(page_index_in_vmobject))
  342. return PageFaultResponse::OutOfMemory;
  343. return response;
  344. }
  345. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  346. {
  347. VERIFY_INTERRUPTS_DISABLED();
  348. VERIFY(vmobject().is_inode());
  349. VERIFY(!s_mm_lock.own_lock());
  350. VERIFY(!g_scheduler_lock.own_lock());
  351. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  352. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  353. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  354. VERIFY(vmobject_physical_page_entry.is_null());
  355. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  356. auto current_thread = Thread::current();
  357. if (current_thread)
  358. current_thread->did_inode_fault();
  359. u8 page_buffer[PAGE_SIZE];
  360. auto& inode = inode_vmobject.inode();
  361. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  362. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  363. if (result.is_error()) {
  364. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  365. return PageFaultResponse::ShouldCrash;
  366. }
  367. auto nread = result.value();
  368. if (nread < PAGE_SIZE) {
  369. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  370. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  371. }
  372. ScopedSpinLock locker(inode_vmobject.m_lock);
  373. if (!vmobject_physical_page_entry.is_null()) {
  374. // Someone else faulted in this page while we were reading from the inode.
  375. // No harm done (other than some duplicate work), remap the page here and return.
  376. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  377. if (!remap_vmobject_page(page_index_in_vmobject))
  378. return PageFaultResponse::OutOfMemory;
  379. return PageFaultResponse::Continue;
  380. }
  381. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  382. if (vmobject_physical_page_entry.is_null()) {
  383. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  384. return PageFaultResponse::OutOfMemory;
  385. }
  386. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  387. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  388. MM.unquickmap_page();
  389. remap_vmobject_page(page_index_in_vmobject);
  390. return PageFaultResponse::Continue;
  391. }
  392. }