JPEGXLLoader.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988
  1. /*
  2. * Copyright (c) 2023, Lucas Chollet <lucas.chollet@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/BitStream.h>
  7. #include <AK/Endian.h>
  8. #include <AK/FixedArray.h>
  9. #include <AK/String.h>
  10. #include <LibCompress/Brotli.h>
  11. #include <LibGfx/ImageFormats/JPEGXLLoader.h>
  12. namespace Gfx {
  13. /// 4.2 - Functions
  14. static ALWAYS_INLINE i32 unpack_signed(u32 u)
  15. {
  16. if (u % 2 == 0)
  17. return static_cast<i32>(u / 2);
  18. return -static_cast<i32>((u + 1) / 2);
  19. }
  20. ///
  21. /// B.2 - Field types
  22. // This is defined as a macro in order to get lazy-evaluated parameter
  23. // Note that the lambda will capture your context by reference.
  24. #define U32(d0, d1, d2, d3) \
  25. ({ \
  26. u8 const selector = TRY(stream.read_bits(2)); \
  27. auto value = [&, selector]() -> ErrorOr<u32> { \
  28. if (selector == 0) \
  29. return (d0); \
  30. if (selector == 1) \
  31. return (d1); \
  32. if (selector == 2) \
  33. return (d2); \
  34. if (selector == 3) \
  35. return (d3); \
  36. VERIFY_NOT_REACHED(); \
  37. }(); \
  38. TRY(value); \
  39. })
  40. static ALWAYS_INLINE ErrorOr<u64> U64(LittleEndianInputBitStream& stream)
  41. {
  42. u8 const selector = TRY(stream.read_bits(2));
  43. if (selector == 0)
  44. return 0;
  45. if (selector == 1)
  46. return 1 + TRY(stream.read_bits(4));
  47. if (selector == 2)
  48. return 17 + TRY(stream.read_bits(8));
  49. VERIFY(selector == 3);
  50. u64 value = TRY(stream.read_bits(12));
  51. u8 shift = 12;
  52. while (TRY(stream.read_bits(1)) == 1) {
  53. if (shift == 60) {
  54. value += TRY(stream.read_bits(4)) << shift;
  55. break;
  56. }
  57. value += TRY(stream.read_bits(8)) << shift;
  58. shift += 8;
  59. }
  60. return value;
  61. }
  62. template<Enum E>
  63. ErrorOr<E> read_enum(LittleEndianInputBitStream& stream)
  64. {
  65. return static_cast<E>(U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(6))));
  66. }
  67. // This is not specified
  68. static ErrorOr<String> read_string(LittleEndianInputBitStream& stream)
  69. {
  70. auto const name_length = U32(0, TRY(stream.read_bits(4)), 16 + TRY(stream.read_bits(5)), 48 + TRY(stream.read_bits(10)));
  71. auto string_buffer = TRY(FixedArray<u8>::create(name_length));
  72. TRY(stream.read_until_filled(string_buffer.span()));
  73. return String::from_utf8(StringView { string_buffer.span() });
  74. }
  75. ///
  76. /// D.2 - Image dimensions
  77. struct SizeHeader {
  78. u32 height {};
  79. u32 width {};
  80. };
  81. static u32 aspect_ratio(u32 height, u32 ratio)
  82. {
  83. if (ratio == 1)
  84. return height;
  85. if (ratio == 2)
  86. return height * 12 / 10;
  87. if (ratio == 3)
  88. return height * 4 / 3;
  89. if (ratio == 4)
  90. return height * 3 / 2;
  91. if (ratio == 5)
  92. return height * 16 / 9;
  93. if (ratio == 6)
  94. return height * 5 / 4;
  95. if (ratio == 7)
  96. return height * 2 / 1;
  97. VERIFY_NOT_REACHED();
  98. }
  99. static ErrorOr<SizeHeader> read_size_header(LittleEndianInputBitStream& stream)
  100. {
  101. SizeHeader size {};
  102. auto const div8 = TRY(stream.read_bit());
  103. if (div8) {
  104. auto const h_div8 = 1 + TRY(stream.read_bits(5));
  105. size.height = 8 * h_div8;
  106. } else {
  107. size.height = U32(
  108. 1 + TRY(stream.read_bits(9)),
  109. 1 + TRY(stream.read_bits(13)),
  110. 1 + TRY(stream.read_bits(18)),
  111. 1 + TRY(stream.read_bits(30)));
  112. }
  113. auto const ratio = TRY(stream.read_bits(3));
  114. if (ratio == 0) {
  115. if (div8) {
  116. auto const w_div8 = 1 + TRY(stream.read_bits(5));
  117. size.width = 8 * w_div8;
  118. } else {
  119. size.width = U32(
  120. 1 + TRY(stream.read_bits(9)),
  121. 1 + TRY(stream.read_bits(13)),
  122. 1 + TRY(stream.read_bits(18)),
  123. 1 + TRY(stream.read_bits(30)));
  124. }
  125. } else {
  126. size.width = aspect_ratio(size.height, ratio);
  127. }
  128. return size;
  129. }
  130. ///
  131. /// D.3.5 - BitDepth
  132. struct BitDepth {
  133. u32 bits_per_sample { 8 };
  134. u8 exp_bits {};
  135. };
  136. static ErrorOr<BitDepth> read_bit_depth(LittleEndianInputBitStream& stream)
  137. {
  138. BitDepth bit_depth;
  139. bool const float_sample = TRY(stream.read_bit());
  140. if (float_sample) {
  141. bit_depth.bits_per_sample = U32(32, 16, 24, 1 + TRY(stream.read_bits(6)));
  142. bit_depth.exp_bits = 1 + TRY(stream.read_bits(4));
  143. } else {
  144. bit_depth.bits_per_sample = U32(8, 10, 12, 1 + TRY(stream.read_bits(6)));
  145. }
  146. return bit_depth;
  147. }
  148. ///
  149. /// E.2 - ColourEncoding
  150. struct ColourEncoding {
  151. enum class ColourSpace {
  152. kRGB = 0,
  153. kGrey = 1,
  154. kXYB = 2,
  155. kUnknown = 3,
  156. };
  157. enum class WhitePoint {
  158. kD65 = 1,
  159. kCustom = 2,
  160. kE = 10,
  161. kDCI = 11,
  162. };
  163. enum class Primaries {
  164. kSRGB = 1,
  165. kCustom = 2,
  166. k2100 = 3,
  167. kP3 = 11,
  168. };
  169. enum class RenderingIntent {
  170. kPerceptual = 0,
  171. kRelative = 1,
  172. kSaturation = 2,
  173. kAbsolute = 3,
  174. };
  175. struct Customxy {
  176. u32 ux {};
  177. u32 uy {};
  178. };
  179. bool want_icc = false;
  180. ColourSpace colour_space { ColourSpace::kRGB };
  181. WhitePoint white_point { WhitePoint::kD65 };
  182. Primaries primaries { Primaries::kSRGB };
  183. Customxy white {};
  184. Customxy red {};
  185. Customxy green {};
  186. Customxy blue {};
  187. RenderingIntent rendering_intent { RenderingIntent::kRelative };
  188. };
  189. [[maybe_unused]] static ErrorOr<ColourEncoding::Customxy> read_custom_xy(LittleEndianInputBitStream& stream)
  190. {
  191. ColourEncoding::Customxy custom_xy;
  192. auto const read_custom = [&stream]() -> ErrorOr<u32> {
  193. return U32(
  194. TRY(stream.read_bits(19)),
  195. 524288 + TRY(stream.read_bits(19)),
  196. 1048576 + TRY(stream.read_bits(20)),
  197. 2097152 + TRY(stream.read_bits(21)));
  198. };
  199. custom_xy.ux = TRY(read_custom());
  200. custom_xy.uy = TRY(read_custom());
  201. return custom_xy;
  202. }
  203. static ErrorOr<ColourEncoding> read_colour_encoding(LittleEndianInputBitStream& stream)
  204. {
  205. ColourEncoding colour_encoding;
  206. bool const all_default = TRY(stream.read_bit());
  207. if (!all_default) {
  208. TODO();
  209. }
  210. return colour_encoding;
  211. }
  212. ///
  213. /// B.3 - Extensions
  214. struct Extensions {
  215. u64 extensions {};
  216. };
  217. static ErrorOr<Extensions> read_extensions(LittleEndianInputBitStream& stream)
  218. {
  219. Extensions extensions;
  220. extensions.extensions = TRY(U64(stream));
  221. if (extensions.extensions != 0)
  222. TODO();
  223. return extensions;
  224. }
  225. ///
  226. /// K.2 - Non-separable upsampling
  227. Array s_d_up2 {
  228. -0.01716200, -0.03452303, -0.04022174, -0.02921014, -0.00624645,
  229. 0.14111091, 0.28896755, 0.00278718, -0.01610267, 0.56661550,
  230. 0.03777607, -0.01986694, -0.03144731, -0.01185068, -0.00213539
  231. };
  232. Array s_d_up4 = {
  233. -0.02419067, -0.03491987, -0.03693351, -0.03094285, -0.00529785,
  234. -0.01663432, -0.03556863, -0.03888905, -0.03516850, -0.00989469,
  235. 0.23651958, 0.33392945, -0.01073543, -0.01313181, -0.03556694,
  236. 0.13048175, 0.40103025, 0.03951150, -0.02077584, 0.46914198,
  237. -0.00209270, -0.01484589, -0.04064806, 0.18942530, 0.56279892,
  238. 0.06674400, -0.02335494, -0.03551682, -0.00754830, -0.02267919,
  239. -0.02363578, 0.00315804, -0.03399098, -0.01359519, -0.00091653,
  240. -0.00335467, -0.01163294, -0.01610294, -0.00974088, -0.00191622,
  241. -0.01095446, -0.03198464, -0.04455121, -0.02799790, -0.00645912,
  242. 0.06390599, 0.22963888, 0.00630981, -0.01897349, 0.67537268,
  243. 0.08483369, -0.02534994, -0.02205197, -0.01667999, -0.00384443
  244. };
  245. Array s_d_up8 {
  246. -0.02928613, -0.03706353, -0.03783812, -0.03324558, -0.00447632, -0.02519406, -0.03752601, -0.03901508, -0.03663285, -0.00646649,
  247. -0.02066407, -0.03838633, -0.04002101, -0.03900035, -0.00901973, -0.01626393, -0.03954148, -0.04046620, -0.03979621, -0.01224485,
  248. 0.29895328, 0.35757708, -0.02447552, -0.01081748, -0.04314594, 0.23903219, 0.41119301, -0.00573046, -0.01450239, -0.04246845,
  249. 0.17567618, 0.45220643, 0.02287757, -0.01936783, -0.03583255, 0.11572472, 0.47416733, 0.06284440, -0.02685066, 0.42720050,
  250. -0.02248939, -0.01155273, -0.04562755, 0.28689496, 0.49093869, -0.00007891, -0.01545926, -0.04562659, 0.21238920, 0.53980934,
  251. 0.03369474, -0.02070211, -0.03866988, 0.14229550, 0.56593398, 0.08045181, -0.02888298, -0.03680918, -0.00542229, -0.02920477,
  252. -0.02788574, -0.02118180, -0.03942402, -0.00775547, -0.02433614, -0.03193943, -0.02030828, -0.04044014, -0.01074016, -0.01930822,
  253. -0.03620399, -0.01974125, -0.03919545, -0.01456093, -0.00045072, -0.00360110, -0.01020207, -0.01231907, -0.00638988, -0.00071592,
  254. -0.00279122, -0.00957115, -0.01288327, -0.00730937, -0.00107783, -0.00210156, -0.00890705, -0.01317668, -0.00813895, -0.00153491,
  255. -0.02128481, -0.04173044, -0.04831487, -0.03293190, -0.00525260, -0.01720322, -0.04052736, -0.05045706, -0.03607317, -0.00738030,
  256. -0.01341764, -0.03965629, -0.05151616, -0.03814886, -0.01005819, 0.18968273, 0.33063684, -0.01300105, -0.01372950, -0.04017465,
  257. 0.13727832, 0.36402234, 0.01027890, -0.01832107, -0.03365072, 0.08734506, 0.38194295, 0.04338228, -0.02525993, 0.56408126,
  258. 0.00458352, -0.01648227, -0.04887868, 0.24585519, 0.62026135, 0.04314807, -0.02213737, -0.04158014, 0.16637289, 0.65027023,
  259. 0.09621636, -0.03101388, -0.04082742, -0.00904519, -0.02790922, -0.02117818, 0.00798662, -0.03995711, -0.01243427, -0.02231705,
  260. -0.02946266, 0.00992055, -0.03600283, -0.01684920, -0.00111684, -0.00411204, -0.01297130, -0.01723725, -0.01022545, -0.00165306,
  261. -0.00313110, -0.01218016, -0.01763266, -0.01125620, -0.00231663, -0.01374149, -0.03797620, -0.05142937, -0.03117307, -0.00581914,
  262. -0.01064003, -0.03608089, -0.05272168, -0.03375670, -0.00795586, 0.09628104, 0.27129991, -0.00353779, -0.01734151, -0.03153981,
  263. 0.05686230, 0.28500998, 0.02230594, -0.02374955, 0.68214326, 0.05018048, -0.02320852, -0.04383616, 0.18459474, 0.71517975,
  264. 0.10805613, -0.03263677, -0.03637639, -0.01394373, -0.02511203, -0.01728636, 0.05407331, -0.02867568, -0.01893131, -0.00240854,
  265. -0.00446511, -0.01636187, -0.02377053, -0.01522848, -0.00333334, -0.00819975, -0.02964169, -0.04499287, -0.02745350, -0.00612408,
  266. 0.02727416, 0.19446600, 0.00159832, -0.02232473, 0.74982506, 0.11452620, -0.03348048, -0.01605681, -0.02070339, -0.00458223
  267. };
  268. ///
  269. /// D.3 - Image metadata
  270. struct PreviewHeader {
  271. };
  272. struct AnimationHeader {
  273. };
  274. struct ExtraChannelInfo {
  275. enum class ExtraChannelType {
  276. kAlpha = 0,
  277. kDepth = 1,
  278. kSpotColour = 2,
  279. kSelectionMask = 3,
  280. kBlack = 4,
  281. kCFA = 5,
  282. kThermal = 6,
  283. kNonOptional = 15,
  284. kOptional = 16,
  285. };
  286. bool d_alpha { true };
  287. ExtraChannelType type { ExtraChannelType::kAlpha };
  288. BitDepth bit_depth {};
  289. u32 dim_shift {};
  290. String name;
  291. bool alpha_associated { false };
  292. };
  293. static ErrorOr<ExtraChannelInfo> read_extra_channel_info(LittleEndianInputBitStream& stream)
  294. {
  295. ExtraChannelInfo extra_channel_info;
  296. extra_channel_info.d_alpha = TRY(stream.read_bit());
  297. if (!extra_channel_info.d_alpha) {
  298. extra_channel_info.type = TRY(read_enum<ExtraChannelInfo::ExtraChannelType>(stream));
  299. extra_channel_info.bit_depth = TRY(read_bit_depth(stream));
  300. extra_channel_info.dim_shift = U32(0, 3, 4, 1 + TRY(stream.read_bits(3)));
  301. extra_channel_info.name = TRY(read_string(stream));
  302. if (extra_channel_info.type == ExtraChannelInfo::ExtraChannelType::kAlpha)
  303. extra_channel_info.alpha_associated = TRY(stream.read_bit());
  304. }
  305. if (extra_channel_info.type != ExtraChannelInfo::ExtraChannelType::kAlpha) {
  306. TODO();
  307. }
  308. return extra_channel_info;
  309. }
  310. struct ToneMapping {
  311. float intensity_target { 255 };
  312. float min_nits { 0 };
  313. bool relative_to_max_display { false };
  314. float linear_below { 0 };
  315. };
  316. static ErrorOr<ToneMapping> read_tone_mapping(LittleEndianInputBitStream& stream)
  317. {
  318. ToneMapping tone_mapping;
  319. bool const all_default = TRY(stream.read_bit());
  320. if (!all_default) {
  321. TODO();
  322. }
  323. return tone_mapping;
  324. }
  325. struct OpsinInverseMatrix {
  326. };
  327. static ErrorOr<OpsinInverseMatrix> read_opsin_inverse_matrix(LittleEndianInputBitStream&)
  328. {
  329. TODO();
  330. }
  331. struct ImageMetadata {
  332. u8 orientation { 1 };
  333. Optional<SizeHeader> intrinsic_size;
  334. Optional<PreviewHeader> preview;
  335. Optional<AnimationHeader> animation;
  336. BitDepth bit_depth;
  337. bool modular_16bit_buffers { true };
  338. u16 num_extra_channels {};
  339. Vector<ExtraChannelInfo, 4> ec_info;
  340. bool xyb_encoded { true };
  341. ColourEncoding colour_encoding;
  342. ToneMapping tone_mapping;
  343. Extensions extensions;
  344. bool default_m;
  345. OpsinInverseMatrix opsin_inverse_matrix;
  346. u8 cw_mask { 0 };
  347. Array<double, 15> up2_weight = s_d_up2;
  348. Array<double, 55> up4_weight = s_d_up4;
  349. Array<double, 210> up8_weight = s_d_up8;
  350. u16 number_of_color_channels() const
  351. {
  352. if (!xyb_encoded && colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey)
  353. return 1;
  354. return 3;
  355. }
  356. u16 number_of_channels() const
  357. {
  358. return number_of_color_channels() + num_extra_channels;
  359. }
  360. Optional<u16> alpha_channel() const
  361. {
  362. for (u16 i = 0; i < ec_info.size(); ++i) {
  363. if (ec_info[i].type == ExtraChannelInfo::ExtraChannelType::kAlpha)
  364. return i + number_of_color_channels();
  365. }
  366. return OptionalNone {};
  367. }
  368. };
  369. static ErrorOr<ImageMetadata> read_metadata_header(LittleEndianInputBitStream& stream)
  370. {
  371. ImageMetadata metadata;
  372. bool const all_default = TRY(stream.read_bit());
  373. if (!all_default) {
  374. bool const extra_fields = TRY(stream.read_bit());
  375. if (extra_fields) {
  376. metadata.orientation = 1 + TRY(stream.read_bits(3));
  377. bool const have_intr_size = TRY(stream.read_bit());
  378. if (have_intr_size)
  379. metadata.intrinsic_size = TRY(read_size_header(stream));
  380. bool const have_preview = TRY(stream.read_bit());
  381. if (have_preview)
  382. TODO();
  383. bool const have_animation = TRY(stream.read_bit());
  384. if (have_animation)
  385. TODO();
  386. }
  387. metadata.bit_depth = TRY(read_bit_depth(stream));
  388. metadata.modular_16bit_buffers = TRY(stream.read_bit());
  389. metadata.num_extra_channels = U32(0, 1, 2 + TRY(stream.read_bits(4)), 1 + TRY(stream.read_bits(12)));
  390. for (u16 i {}; i < metadata.num_extra_channels; ++i)
  391. metadata.ec_info.append(TRY(read_extra_channel_info(stream)));
  392. metadata.xyb_encoded = TRY(stream.read_bit());
  393. metadata.colour_encoding = TRY(read_colour_encoding(stream));
  394. if (extra_fields)
  395. metadata.tone_mapping = TRY(read_tone_mapping(stream));
  396. metadata.extensions = TRY(read_extensions(stream));
  397. }
  398. metadata.default_m = TRY(stream.read_bit());
  399. if (!metadata.default_m && metadata.xyb_encoded)
  400. metadata.opsin_inverse_matrix = TRY(read_opsin_inverse_matrix(stream));
  401. if (!metadata.default_m)
  402. metadata.cw_mask = TRY(stream.read_bits(3));
  403. if (metadata.cw_mask != 0)
  404. TODO();
  405. return metadata;
  406. }
  407. ///
  408. /// Table F.7 — BlendingInfo bundle
  409. struct BlendingInfo {
  410. enum class BlendMode {
  411. kReplace = 0,
  412. kAdd = 1,
  413. kBlend = 2,
  414. kMulAdd = 3,
  415. kMul = 4,
  416. };
  417. BlendMode mode {};
  418. u8 alpha_channel {};
  419. bool clamp { false };
  420. u8 source {};
  421. };
  422. static ErrorOr<BlendingInfo> read_blending_info(LittleEndianInputBitStream& stream, ImageMetadata const& metadata, bool full_frame)
  423. {
  424. BlendingInfo blending_info;
  425. blending_info.mode = static_cast<BlendingInfo::BlendMode>(U32(0, 1, 2, 3 + TRY(stream.read_bits(2))));
  426. bool const extra = metadata.num_extra_channels > 0;
  427. if (extra) {
  428. auto const blend_or_mul_add = blending_info.mode == BlendingInfo::BlendMode::kBlend
  429. || blending_info.mode == BlendingInfo::BlendMode::kMulAdd;
  430. if (blend_or_mul_add)
  431. blending_info.alpha_channel = U32(0, 1, 2, 3 + TRY(stream.read_bits(3)));
  432. if (blend_or_mul_add || blending_info.mode == BlendingInfo::BlendMode::kMul)
  433. blending_info.clamp = TRY(stream.read_bit());
  434. }
  435. if (blending_info.mode != BlendingInfo::BlendMode::kReplace
  436. || !full_frame) {
  437. blending_info.source = TRY(stream.read_bits(2));
  438. }
  439. return blending_info;
  440. }
  441. ///
  442. /// J.1 - General
  443. struct RestorationFilter {
  444. bool gab { true };
  445. u8 epf_iters { 2 };
  446. Extensions extensions;
  447. };
  448. static ErrorOr<RestorationFilter> read_restoration_filter(LittleEndianInputBitStream& stream)
  449. {
  450. RestorationFilter restoration_filter;
  451. auto const all_defaults = TRY(stream.read_bit());
  452. if (!all_defaults) {
  453. restoration_filter.gab = TRY(stream.read_bit());
  454. if (restoration_filter.gab) {
  455. TODO();
  456. }
  457. restoration_filter.epf_iters = TRY(stream.read_bits(2));
  458. if (restoration_filter.epf_iters != 0) {
  459. TODO();
  460. }
  461. restoration_filter.extensions = TRY(read_extensions(stream));
  462. }
  463. return restoration_filter;
  464. }
  465. ///
  466. /// Table F.6 — Passes bundle
  467. struct Passes {
  468. u8 num_passes { 1 };
  469. };
  470. static ErrorOr<Passes> read_passes(LittleEndianInputBitStream& stream)
  471. {
  472. Passes passes;
  473. passes.num_passes = U32(1, 2, 3, 4 + TRY(stream.read_bits(3)));
  474. if (passes.num_passes != 1) {
  475. TODO();
  476. }
  477. return passes;
  478. }
  479. ///
  480. /// F.2 - FrameHeader
  481. struct FrameHeader {
  482. enum class FrameType {
  483. kRegularFrame = 0,
  484. kLFFrame = 1,
  485. kReferenceOnly = 2,
  486. kSkipProgressive = 3,
  487. };
  488. enum class Encoding {
  489. kVarDCT = 0,
  490. kModular = 1,
  491. };
  492. enum class Flags {
  493. None = 0,
  494. kNoise = 1,
  495. kPatches = 1 << 1,
  496. kSplines = 1 << 4,
  497. kUseLfFrame = 1 << 5,
  498. kSkipAdaptiveLFSmoothing = 1 << 7,
  499. };
  500. FrameType frame_type { FrameType::kRegularFrame };
  501. Encoding encoding { Encoding::kVarDCT };
  502. Flags flags { Flags::None };
  503. bool do_YCbCr { false };
  504. Array<u8, 3> jpeg_upsampling {};
  505. u8 upsampling {};
  506. FixedArray<u8> ec_upsampling {};
  507. u8 group_size_shift { 1 };
  508. Passes passes {};
  509. u8 lf_level {};
  510. bool have_crop { false };
  511. BlendingInfo blending_info {};
  512. FixedArray<BlendingInfo> ec_blending_info {};
  513. u32 duration {};
  514. bool is_last { true };
  515. u8 save_as_reference {};
  516. bool save_before_ct {};
  517. String name {};
  518. RestorationFilter restoration_filter {};
  519. Extensions extensions {};
  520. };
  521. static int operator&(FrameHeader::Flags first, FrameHeader::Flags second)
  522. {
  523. return static_cast<int>(first) & static_cast<int>(second);
  524. }
  525. static ErrorOr<FrameHeader> read_frame_header(LittleEndianInputBitStream& stream, ImageMetadata const& metadata)
  526. {
  527. FrameHeader frame_header;
  528. bool const all_default = TRY(stream.read_bit());
  529. if (!all_default) {
  530. frame_header.frame_type = static_cast<FrameHeader::FrameType>(TRY(stream.read_bits(2)));
  531. frame_header.encoding = static_cast<FrameHeader::Encoding>(TRY(stream.read_bits(1)));
  532. frame_header.flags = static_cast<FrameHeader::Flags>(TRY(U64(stream)));
  533. if (!metadata.xyb_encoded)
  534. frame_header.do_YCbCr = TRY(stream.read_bit());
  535. if (!(frame_header.flags & FrameHeader::Flags::kUseLfFrame)) {
  536. if (frame_header.do_YCbCr) {
  537. frame_header.jpeg_upsampling[0] = TRY(stream.read_bits(2));
  538. frame_header.jpeg_upsampling[1] = TRY(stream.read_bits(2));
  539. frame_header.jpeg_upsampling[2] = TRY(stream.read_bits(2));
  540. }
  541. frame_header.upsampling = U32(1, 2, 4, 8);
  542. frame_header.ec_upsampling = TRY(FixedArray<u8>::create(metadata.num_extra_channels));
  543. for (u16 i {}; i < metadata.num_extra_channels; ++i)
  544. frame_header.ec_upsampling[i] = U32(1, 2, 4, 8);
  545. }
  546. if (frame_header.encoding == FrameHeader::Encoding::kModular)
  547. frame_header.group_size_shift = TRY(stream.read_bits(2));
  548. if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
  549. TODO();
  550. if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly)
  551. frame_header.passes = TRY(read_passes(stream));
  552. if (frame_header.frame_type == FrameHeader::FrameType::kLFFrame)
  553. TODO();
  554. if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame)
  555. frame_header.have_crop = TRY(stream.read_bit());
  556. if (frame_header.have_crop)
  557. TODO();
  558. bool const normal_frame = frame_header.frame_type == FrameHeader::FrameType::kRegularFrame
  559. || frame_header.frame_type == FrameHeader::FrameType::kSkipProgressive;
  560. // FIXME: also consider "cropped" image of the dimension of the frame
  561. VERIFY(!frame_header.have_crop);
  562. bool const full_frame = !frame_header.have_crop;
  563. if (normal_frame) {
  564. frame_header.blending_info = TRY(read_blending_info(stream, metadata, full_frame));
  565. frame_header.ec_blending_info = TRY(FixedArray<BlendingInfo>::create(metadata.num_extra_channels));
  566. for (u16 i {}; i < metadata.num_extra_channels; ++i)
  567. frame_header.ec_blending_info[i] = TRY(read_blending_info(stream, metadata, full_frame));
  568. if (metadata.animation.has_value())
  569. TODO();
  570. frame_header.is_last = TRY(stream.read_bit());
  571. }
  572. // FIXME: Ensure that is_last has the correct default value
  573. VERIFY(normal_frame);
  574. auto const resets_canvas = full_frame && frame_header.blending_info.mode == BlendingInfo::BlendMode::kReplace;
  575. auto const can_reference = !frame_header.is_last && (frame_header.duration == 0 || frame_header.save_as_reference != 0) && frame_header.frame_type != FrameHeader::FrameType::kLFFrame;
  576. if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) {
  577. if (!frame_header.is_last)
  578. TODO();
  579. }
  580. frame_header.save_before_ct = !normal_frame;
  581. if (frame_header.frame_type == FrameHeader::FrameType::kReferenceOnly || (resets_canvas && can_reference))
  582. frame_header.save_before_ct = TRY(stream.read_bit());
  583. frame_header.name = TRY(read_string(stream));
  584. frame_header.restoration_filter = TRY(read_restoration_filter(stream));
  585. frame_header.extensions = TRY(read_extensions(stream));
  586. }
  587. return frame_header;
  588. }
  589. ///
  590. /// F.3 TOC
  591. struct TOC {
  592. FixedArray<u32> entries;
  593. FixedArray<u32> group_offsets;
  594. };
  595. static u64 num_toc_entries(FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
  596. {
  597. // F.3.1 - General
  598. if (num_groups == 1 && frame_header.passes.num_passes == 1)
  599. return 1;
  600. return 1 + num_lf_groups + 1 + num_groups * frame_header.passes.num_passes;
  601. }
  602. static ErrorOr<TOC> read_toc(LittleEndianInputBitStream& stream, FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
  603. {
  604. TOC toc;
  605. bool const permuted_toc = TRY(stream.read_bit());
  606. if (permuted_toc) {
  607. // Read permutations
  608. TODO();
  609. }
  610. // F.3.3 - Decoding TOC
  611. stream.align_to_byte_boundary();
  612. auto const toc_entries = num_toc_entries(frame_header, num_groups, num_lf_groups);
  613. toc.entries = TRY(FixedArray<u32>::create(toc_entries));
  614. toc.group_offsets = TRY(FixedArray<u32>::create(toc_entries));
  615. for (u32 i {}; i < toc_entries; ++i) {
  616. auto const new_entry = U32(
  617. TRY(stream.read_bits(10)),
  618. 1024 + TRY(stream.read_bits(14)),
  619. 17408 + TRY(stream.read_bits(22)),
  620. 4211712 + TRY(stream.read_bits(30)));
  621. toc.entries[i] = new_entry;
  622. toc.group_offsets[i] = (i == 0 ? 0 : toc.group_offsets[i - 1]) + new_entry;
  623. }
  624. if (permuted_toc)
  625. TODO();
  626. stream.align_to_byte_boundary();
  627. return toc;
  628. }
  629. ///
  630. /// G.1.2 - LF channel dequantization weights
  631. struct LfChannelDequantization {
  632. float m_x_lf_unscaled { 4096 };
  633. float m_y_lf_unscaled { 512 };
  634. float m_b_lf_unscaled { 256 };
  635. };
  636. static ErrorOr<LfChannelDequantization> read_lf_channel_dequantization(LittleEndianInputBitStream& stream)
  637. {
  638. LfChannelDequantization lf_channel_dequantization;
  639. auto const all_default = TRY(stream.read_bit());
  640. if (!all_default) {
  641. TODO();
  642. }
  643. return lf_channel_dequantization;
  644. }
  645. ///
  646. /// C - Entropy decoding
  647. class EntropyDecoder {
  648. using BrotliCanonicalCode = Compress::Brotli::CanonicalCode;
  649. public:
  650. static ErrorOr<EntropyDecoder> create(LittleEndianInputBitStream& stream, u8 initial_num_distrib)
  651. {
  652. EntropyDecoder entropy_decoder;
  653. // C.2 - Distribution decoding
  654. entropy_decoder.m_lz77_enabled = TRY(stream.read_bit());
  655. if (entropy_decoder.m_lz77_enabled) {
  656. TODO();
  657. }
  658. TRY(entropy_decoder.read_pre_clustered_distributions(stream, initial_num_distrib));
  659. bool const use_prefix_code = TRY(stream.read_bit());
  660. if (!use_prefix_code)
  661. entropy_decoder.m_log_alphabet_size = 5 + TRY(stream.read_bits(2));
  662. for (auto& config : entropy_decoder.m_configs)
  663. config = TRY(entropy_decoder.read_config(stream));
  664. Vector<u16> counts;
  665. TRY(counts.try_resize(entropy_decoder.m_configs.size()));
  666. TRY(entropy_decoder.m_distributions.try_resize(entropy_decoder.m_configs.size()));
  667. if (use_prefix_code) {
  668. for (auto& count : counts) {
  669. if (TRY(stream.read_bit())) {
  670. auto const n = TRY(stream.read_bits(4));
  671. count = 1 + (1 << n) + TRY(stream.read_bits(n));
  672. } else {
  673. count = 1;
  674. }
  675. }
  676. // After reading the counts, the decoder reads each D[i] (implicitly
  677. // described by a prefix code) as specified in C.2.4, with alphabet_size = count[i].
  678. for (u32 i {}; i < entropy_decoder.m_distributions.size(); ++i) {
  679. // The alphabet size mentioned in the [Brotli] RFC is explicitly specified as parameter alphabet_size
  680. // when the histogram is being decoded, except in the special case of alphabet_size == 1, where no
  681. // histogram is read, and all decoded symbols are zero without reading any bits at all.
  682. if (counts[i] != 1) {
  683. entropy_decoder.m_distributions[i] = TRY(BrotliCanonicalCode::read_prefix_code(stream, counts[i]));
  684. } else {
  685. entropy_decoder.m_distributions[i] = BrotliCanonicalCode { { 1 }, { 0 } };
  686. }
  687. }
  688. } else {
  689. TODO();
  690. }
  691. return entropy_decoder;
  692. }
  693. ErrorOr<u32> decode_hybrid_uint(LittleEndianInputBitStream& stream, u16 context)
  694. {
  695. // C.3.3 - Hybrid integer decoding
  696. if (m_lz77_enabled)
  697. TODO();
  698. // Read symbol from entropy coded stream using D[clusters[ctx]]
  699. auto const token = TRY(m_distributions[m_clusters[context]].read_symbol(stream));
  700. auto r = TRY(read_uint(stream, m_configs[m_clusters[context]], token));
  701. return r;
  702. }
  703. private:
  704. struct HybridUint {
  705. u32 split_exponent {};
  706. u32 split {};
  707. u32 msb_in_token {};
  708. u32 lsb_in_token {};
  709. };
  710. static ErrorOr<u32> read_uint(LittleEndianInputBitStream& stream, HybridUint const& config, u32 token)
  711. {
  712. if (token < config.split)
  713. return token;
  714. auto const n = config.split_exponent
  715. - config.msb_in_token
  716. - config.lsb_in_token
  717. + ((token - config.split) >> (config.msb_in_token + config.lsb_in_token));
  718. VERIFY(n < 32);
  719. u32 const low_bits = token & ((1 << config.lsb_in_token) - 1);
  720. token = token >> config.lsb_in_token;
  721. token &= (1 << config.msb_in_token) - 1;
  722. token |= (1 << config.msb_in_token);
  723. auto const result = ((token << n | TRY(stream.read_bits(n))) << config.lsb_in_token) | low_bits;
  724. VERIFY(result < (1ul << 32));
  725. return result;
  726. }
  727. ErrorOr<void> read_pre_clustered_distributions(LittleEndianInputBitStream& stream, u8 num_distrib)
  728. {
  729. // C.2.2 Distribution clustering
  730. if (num_distrib == 1)
  731. TODO();
  732. TRY(m_clusters.try_resize(num_distrib));
  733. bool const is_simple = TRY(stream.read_bit());
  734. u16 num_clusters = 0;
  735. if (is_simple) {
  736. u8 const nbits = TRY(stream.read_bits(2));
  737. for (u8 i {}; i < num_distrib; ++i) {
  738. m_clusters[i] = TRY(stream.read_bits(nbits));
  739. if (m_clusters[i] >= num_clusters)
  740. num_clusters = m_clusters[i] + 1;
  741. }
  742. } else {
  743. TODO();
  744. }
  745. TRY(m_configs.try_resize(num_clusters));
  746. return {};
  747. }
  748. ErrorOr<HybridUint> read_config(LittleEndianInputBitStream& stream) const
  749. {
  750. // C.2.3 - Hybrid integer configuration
  751. HybridUint config {};
  752. config.split_exponent = TRY(stream.read_bits(ceil(log2(m_log_alphabet_size + 1))));
  753. if (config.split_exponent != m_log_alphabet_size) {
  754. auto nbits = ceil(log2(config.split_exponent + 1));
  755. config.msb_in_token = TRY(stream.read_bits(nbits));
  756. nbits = ceil(log2(config.split_exponent - config.msb_in_token + 1));
  757. config.lsb_in_token = TRY(stream.read_bits(nbits));
  758. } else {
  759. config.msb_in_token = 0;
  760. config.lsb_in_token = 0;
  761. }
  762. config.split = 1 << config.split_exponent;
  763. return config;
  764. }
  765. bool m_lz77_enabled {};
  766. Vector<u32> m_clusters;
  767. Vector<HybridUint> m_configs;
  768. u8 m_log_alphabet_size { 15 };
  769. Vector<BrotliCanonicalCode> m_distributions; // D in the spec
  770. };
  771. ///
  772. /// H.4.2 - MA tree decoding
  773. class MATree {
  774. public:
  775. struct LeafNode {
  776. u8 ctx {};
  777. u8 predictor {};
  778. i32 offset {};
  779. u32 multiplier {};
  780. };
  781. static ErrorOr<MATree> decode(LittleEndianInputBitStream& stream, Optional<EntropyDecoder>& decoder)
  782. {
  783. // G.1.3 - GlobalModular
  784. MATree tree;
  785. // 1 / 2 Read the 6 pre-clustered distributions
  786. auto const num_distrib = 6;
  787. if (!decoder.has_value())
  788. decoder = TRY(EntropyDecoder::create(stream, num_distrib));
  789. // 2 / 2 Decode the tree
  790. u64 ctx_id = 0;
  791. u64 nodes_left = 1;
  792. tree.m_tree.clear();
  793. while (nodes_left > 0) {
  794. nodes_left--;
  795. i32 const property = TRY(decoder->decode_hybrid_uint(stream, 1)) - 1;
  796. if (property >= 0) {
  797. DecisionNode decision_node;
  798. decision_node.property = property;
  799. decision_node.value = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 0)));
  800. decision_node.left_child = tree.m_tree.size() + nodes_left + 1;
  801. decision_node.right_child = tree.m_tree.size() + nodes_left + 2;
  802. tree.m_tree.empend(decision_node);
  803. nodes_left += 2;
  804. } else {
  805. LeafNode leaf_node;
  806. leaf_node.ctx = ctx_id++;
  807. leaf_node.predictor = TRY(decoder->decode_hybrid_uint(stream, 2));
  808. leaf_node.offset = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 3)));
  809. auto const mul_log = TRY(decoder->decode_hybrid_uint(stream, 4));
  810. auto const mul_bits = TRY(decoder->decode_hybrid_uint(stream, 5));
  811. leaf_node.multiplier = (mul_bits + 1) << mul_log;
  812. tree.m_tree.empend(leaf_node);
  813. }
  814. }
  815. // Finally, the decoder reads (tree.size() + 1) / 2 pre-clustered distributions D as specified in C.1.
  816. auto const num_pre_clustered_distributions = (tree.m_tree.size() + 1) / 2;
  817. decoder = TRY(decoder->create(stream, num_pre_clustered_distributions));
  818. return tree;
  819. }
  820. LeafNode get_leaf(Vector<i32> const& properties) const
  821. {
  822. // To find the MA leaf node, the MA tree is traversed, starting at the root node tree[0]
  823. // and for each decision node d, testing if property[d.property] > d.value, proceeding to
  824. // the node tree[d.left_child] if the test evaluates to true and to the node tree[d.right_child]
  825. // otherwise, until a leaf node is reached.
  826. DecisionNode node { m_tree[0].get<DecisionNode>() };
  827. while (true) {
  828. auto const next_node = [this, &properties, &node]() {
  829. // Note: The behavior when trying to access a non-existing property is taken from jxl-oxide
  830. if (node.property < properties.size() && properties[node.property] > node.value)
  831. return m_tree[node.left_child];
  832. return m_tree[node.right_child];
  833. }();
  834. if (next_node.has<LeafNode>())
  835. return next_node.get<LeafNode>();
  836. node = next_node.get<DecisionNode>();
  837. }
  838. }
  839. private:
  840. struct DecisionNode {
  841. u64 property {};
  842. i64 value {};
  843. u64 left_child {};
  844. u64 right_child {};
  845. };
  846. Vector<Variant<DecisionNode, LeafNode>> m_tree;
  847. };
  848. ///
  849. /// H.5 - Self-correcting predictor
  850. struct WPHeader {
  851. u8 wp_p1 { 16 };
  852. u8 wp_p2 { 10 };
  853. u8 wp_p3a { 7 };
  854. u8 wp_p3b { 7 };
  855. u8 wp_p3c { 7 };
  856. u8 wp_p3d { 0 };
  857. u8 wp_p3e { 0 };
  858. u8 wp_w0 { 13 };
  859. u8 wp_w1 { 12 };
  860. u8 wp_w2 { 12 };
  861. u8 wp_w3 { 12 };
  862. };
  863. static ErrorOr<WPHeader> read_self_correcting_predictor(LittleEndianInputBitStream& stream)
  864. {
  865. WPHeader self_correcting_predictor {};
  866. bool const default_wp = TRY(stream.read_bit());
  867. if (!default_wp) {
  868. TODO();
  869. }
  870. return self_correcting_predictor;
  871. }
  872. ///
  873. ///
  874. struct TransformInfo {
  875. enum class TransformId {
  876. kRCT = 0,
  877. kPalette = 1,
  878. kSqueeze = 2,
  879. };
  880. TransformId tr {};
  881. u32 begin_c {};
  882. u32 rct_type {};
  883. };
  884. static ErrorOr<TransformInfo> read_transform_info(LittleEndianInputBitStream& stream)
  885. {
  886. TransformInfo transform_info;
  887. transform_info.tr = static_cast<TransformInfo::TransformId>(TRY(stream.read_bits(2)));
  888. if (transform_info.tr != TransformInfo::TransformId::kSqueeze) {
  889. transform_info.begin_c = U32(
  890. TRY(stream.read_bits(3)),
  891. 8 + TRY(stream.read_bits(3)),
  892. 72 + TRY(stream.read_bits(10)),
  893. 1096 + TRY(stream.read_bits(13)));
  894. }
  895. if (transform_info.tr == TransformInfo::TransformId::kRCT) {
  896. transform_info.rct_type = U32(
  897. 6,
  898. TRY(stream.read_bits(2)),
  899. 2 + TRY(stream.read_bits(4)),
  900. 10 + TRY(stream.read_bits(6)));
  901. }
  902. if (transform_info.tr != TransformInfo::TransformId::kRCT)
  903. TODO();
  904. return transform_info;
  905. }
  906. ///
  907. /// Local abstractions to store the decoded image
  908. class Channel {
  909. public:
  910. static ErrorOr<Channel> create(u32 width, u32 height)
  911. {
  912. Channel channel;
  913. channel.m_width = width;
  914. channel.m_height = height;
  915. TRY(channel.m_pixels.try_resize(channel.m_width * channel.m_height));
  916. return channel;
  917. }
  918. i32 get(u32 x, u32 y) const
  919. {
  920. return m_pixels[x * m_width + y];
  921. }
  922. void set(u32 x, u32 y, i32 value)
  923. {
  924. m_pixels[x * m_width + y] = value;
  925. }
  926. u32 width() const
  927. {
  928. return m_width;
  929. }
  930. u32 height() const
  931. {
  932. return m_height;
  933. }
  934. u32 hshift() const
  935. {
  936. return m_hshift;
  937. }
  938. u32 vshift() const
  939. {
  940. return m_vshift;
  941. }
  942. bool decoded() const
  943. {
  944. return m_decoded;
  945. }
  946. void set_decoded(bool decoded)
  947. {
  948. m_decoded = decoded;
  949. }
  950. private:
  951. u32 m_width {};
  952. u32 m_height {};
  953. u32 m_hshift {};
  954. u32 m_vshift {};
  955. bool m_decoded { false };
  956. Vector<i32> m_pixels {};
  957. };
  958. class Image {
  959. public:
  960. static ErrorOr<Image> create(IntSize size, ImageMetadata const& metadata)
  961. {
  962. Image image {};
  963. for (u16 i = 0; i < metadata.number_of_channels(); ++i) {
  964. if (i < metadata.number_of_color_channels()) {
  965. TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height()))));
  966. } else {
  967. auto const dim_shift = metadata.ec_info[i - metadata.number_of_color_channels()].dim_shift;
  968. TRY(image.m_channels.try_append(TRY(Channel::create(size.width() >> dim_shift, size.height() >> dim_shift))));
  969. }
  970. }
  971. return image;
  972. }
  973. ErrorOr<NonnullRefPtr<Bitmap>> to_bitmap(ImageMetadata& metadata) const
  974. {
  975. // FIXME: which channel size should we use?
  976. auto const width = m_channels[0].width();
  977. auto const height = m_channels[0].height();
  978. auto bitmap = TRY(Bitmap::create(BitmapFormat::BGRA8888, { width, height }));
  979. auto const alpha_channel = metadata.alpha_channel();
  980. auto const bits_per_sample = metadata.bit_depth.bits_per_sample;
  981. VERIFY(bits_per_sample >= 8);
  982. for (u32 y {}; y < height; ++y) {
  983. for (u32 x {}; x < width; ++x) {
  984. auto const to_u8 = [&, bits_per_sample](i32 sample) -> u8 {
  985. // FIXME: Don't truncate the result to 8 bits
  986. static constexpr auto maximum_supported_bit_depth = 8;
  987. if (bits_per_sample > maximum_supported_bit_depth)
  988. sample >>= (bits_per_sample - maximum_supported_bit_depth);
  989. return clamp(sample + .5, 0, (1 << maximum_supported_bit_depth) - 1);
  990. };
  991. auto const color = [&]() -> Color {
  992. if (!alpha_channel.has_value()) {
  993. return { to_u8(m_channels[0].get(x, y)),
  994. to_u8(m_channels[1].get(x, y)),
  995. to_u8(m_channels[2].get(x, y)) };
  996. }
  997. return {
  998. to_u8(m_channels[0].get(x, y)),
  999. to_u8(m_channels[1].get(x, y)),
  1000. to_u8(m_channels[2].get(x, y)),
  1001. to_u8(m_channels[*alpha_channel].get(x, y)),
  1002. };
  1003. }();
  1004. bitmap->set_pixel(x, y, color);
  1005. }
  1006. }
  1007. return bitmap;
  1008. }
  1009. Vector<Channel>& channels()
  1010. {
  1011. return m_channels;
  1012. }
  1013. private:
  1014. Vector<Channel> m_channels;
  1015. };
  1016. ///
  1017. /// H.2 - Image decoding
  1018. struct ModularHeader {
  1019. bool use_global_tree {};
  1020. WPHeader wp_params {};
  1021. Vector<TransformInfo> transform {};
  1022. };
  1023. static ErrorOr<Vector<i32>> get_properties(Vector<Channel> const& channels, u16 i, u32 x, u32 y)
  1024. {
  1025. Vector<i32> properties;
  1026. // Table H.4 - Property definitions
  1027. TRY(properties.try_append(i));
  1028. // FIXME: Handle other cases than GlobalModular
  1029. TRY(properties.try_append(0));
  1030. TRY(properties.try_append(y));
  1031. TRY(properties.try_append(x));
  1032. i32 const W = x > 0 ? channels[i].get(x - 1, y) : (y > 0 ? channels[i].get(x, y - 1) : 0);
  1033. i32 const N = y > 0 ? channels[i].get(x, y - 1) : W;
  1034. i32 const NW = x > 0 && y > 0 ? channels[i].get(x - 1, y - 1) : W;
  1035. i32 const NE = x + 1 < channels[i].width() && y > 0 ? channels[i].get(x + 1, y - 1) : N;
  1036. i32 const NN = y > 1 ? channels[i].get(x, y - 2) : N;
  1037. i32 const WW = x > 1 ? channels[i].get(x - 2, y) : W;
  1038. TRY(properties.try_append(abs(N)));
  1039. TRY(properties.try_append(abs(W)));
  1040. TRY(properties.try_append(N));
  1041. TRY(properties.try_append(W));
  1042. // x > 0 ? W - /* (the value of property 9 at position (x - 1, y)) */ : W
  1043. if (x > 0) {
  1044. auto const x_1 = x - 1;
  1045. i32 const W_x_1 = x_1 > 0 ? channels[i].get(x_1 - 1, y) : (y > 0 ? channels[i].get(x_1, y - 1) : 0);
  1046. i32 const N_x_1 = y > 0 ? channels[i].get(x_1, y - 1) : W_x_1;
  1047. i32 const NW_x_1 = x_1 > 0 && y > 0 ? channels[i].get(x_1 - 1, y - 1) : W_x_1;
  1048. TRY(properties.try_append(W - (W_x_1 + N_x_1 - NW_x_1)));
  1049. } else {
  1050. TRY(properties.try_append(W));
  1051. }
  1052. TRY(properties.try_append(W + N - NW));
  1053. TRY(properties.try_append(W - NW));
  1054. TRY(properties.try_append(NW - N));
  1055. TRY(properties.try_append(N - NE));
  1056. TRY(properties.try_append(N - NN));
  1057. TRY(properties.try_append(W - WW));
  1058. // FIXME: Correctly compute max_error
  1059. TRY(properties.try_append(0));
  1060. for (i16 j = i - 1; j >= 0; j--) {
  1061. if (channels[j].width() != channels[i].width())
  1062. continue;
  1063. if (channels[j].height() != channels[i].height())
  1064. continue;
  1065. if (channels[j].hshift() != channels[i].hshift())
  1066. continue;
  1067. if (channels[j].vshift() != channels[i].vshift())
  1068. continue;
  1069. auto rC = channels[j].get(x, y);
  1070. auto rW = (x > 0 ? channels[j].get(x - 1, y) : 0);
  1071. auto rN = (y > 0 ? channels[j].get(x, y - 1) : rW);
  1072. auto rNW = (x > 0 && y > 0 ? channels[j].get(x - 1, y - 1) : rW);
  1073. auto rG = clamp(rW + rN - rNW, min(rW, rN), max(rW, rN));
  1074. TRY(properties.try_append(abs(rC)));
  1075. TRY(properties.try_append(rC));
  1076. TRY(properties.try_append(abs(rC - rG)));
  1077. TRY(properties.try_append(rC - rG));
  1078. }
  1079. return properties;
  1080. }
  1081. static i32 prediction(Channel const& channel, u32 x, u32 y, u32 predictor)
  1082. {
  1083. i32 const W = x > 0 ? channel.get(x - 1, y) : (y > 0 ? channel.get(x, y - 1) : 0);
  1084. i32 const N = y > 0 ? channel.get(x, y - 1) : W;
  1085. i32 const NW = x > 0 && y > 0 ? channel.get(x - 1, y - 1) : W;
  1086. i32 const NE = x + 1 < channel.width() && y > 0 ? channel.get(x + 1, y - 1) : N;
  1087. i32 const NN = y > 1 ? channel.get(x, y - 2) : N;
  1088. i32 const NEE = x + 2 < channel.width() and y > 0 ? channel.get(x + 2, y - 1) : NE;
  1089. i32 const WW = x > 1 ? channel.get(x - 2, y) : W;
  1090. switch (predictor) {
  1091. case 0:
  1092. return 0;
  1093. case 1:
  1094. return W;
  1095. case 2:
  1096. return N;
  1097. case 3:
  1098. return (W + N) / 2;
  1099. case 4:
  1100. return abs(N - NW) < abs(W - NW) ? W : N;
  1101. case 5:
  1102. return clamp(W + N - NW, min(W, N), max(W, N));
  1103. case 6:
  1104. TODO();
  1105. return (0 + 3) >> 3;
  1106. case 7:
  1107. return NE;
  1108. case 8:
  1109. return NW;
  1110. case 9:
  1111. return WW;
  1112. case 10:
  1113. return (W + NW) / 2;
  1114. case 11:
  1115. return (N + NW) / 2;
  1116. case 12:
  1117. return (N + NE) / 2;
  1118. case 13:
  1119. return (6 * N - 2 * NN + 7 * W + WW + NEE + 3 * NE + 8) / 16;
  1120. }
  1121. VERIFY_NOT_REACHED();
  1122. }
  1123. static ErrorOr<ModularHeader> read_modular_header(LittleEndianInputBitStream& stream,
  1124. Image& image,
  1125. Optional<EntropyDecoder>& decoder,
  1126. MATree const& global_tree,
  1127. u16 num_channels)
  1128. {
  1129. ModularHeader modular_header;
  1130. modular_header.use_global_tree = TRY(stream.read_bit());
  1131. modular_header.wp_params = TRY(read_self_correcting_predictor(stream));
  1132. auto const nb_transforms = U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(8)));
  1133. TRY(modular_header.transform.try_resize(nb_transforms));
  1134. for (u32 i {}; i < nb_transforms; ++i)
  1135. modular_header.transform[i] = TRY(read_transform_info(stream));
  1136. Optional<MATree> local_tree;
  1137. if (!modular_header.use_global_tree)
  1138. TODO();
  1139. // The decoder then starts an entropy-coded stream (C.1) and decodes the data for each channel
  1140. // (in ascending order of index) as specified in H.3, skipping any channels having width or height
  1141. // zero. Finally, the inverse transformations are applied (from last to first) as described in H.6.
  1142. auto const& tree = local_tree.has_value() ? *local_tree : global_tree;
  1143. for (u16 i {}; i < num_channels; ++i) {
  1144. for (u32 y {}; y < image.channels()[i].height(); y++) {
  1145. for (u32 x {}; x < image.channels()[i].width(); x++) {
  1146. auto const properties = TRY(get_properties(image.channels(), i, x, y));
  1147. auto const leaf_node = tree.get_leaf(properties);
  1148. auto diff = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, leaf_node.ctx)));
  1149. diff = (diff * leaf_node.multiplier) + leaf_node.offset;
  1150. auto const total = diff + prediction(image.channels()[i], x, y, leaf_node.predictor);
  1151. image.channels()[i].set(x, y, total);
  1152. }
  1153. }
  1154. image.channels()[i].set_decoded(true);
  1155. }
  1156. return modular_header;
  1157. }
  1158. ///
  1159. /// G.1.2 - LF channel dequantization weights
  1160. struct GlobalModular {
  1161. MATree ma_tree;
  1162. ModularHeader modular_header;
  1163. };
  1164. static ErrorOr<GlobalModular> read_global_modular(LittleEndianInputBitStream& stream,
  1165. Image& image,
  1166. FrameHeader const& frame_header,
  1167. ImageMetadata const& metadata,
  1168. Optional<EntropyDecoder>& entropy_decoder)
  1169. {
  1170. GlobalModular global_modular;
  1171. auto const decode_ma_tree = TRY(stream.read_bit());
  1172. if (decode_ma_tree)
  1173. global_modular.ma_tree = TRY(MATree::decode(stream, entropy_decoder));
  1174. // The decoder then decodes a modular sub-bitstream (Annex H), where
  1175. // the number of channels is computed as follows:
  1176. auto num_channels = metadata.num_extra_channels;
  1177. if (frame_header.encoding == FrameHeader::Encoding::kModular) {
  1178. if (!frame_header.do_YCbCr && !metadata.xyb_encoded
  1179. && metadata.colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) {
  1180. num_channels += 1;
  1181. } else {
  1182. num_channels += 3;
  1183. }
  1184. }
  1185. // FIXME: Ensure this spec comment:
  1186. // However, the decoder only decodes the first nb_meta_channels channels and any further channels
  1187. // that have a width and height that are both at most group_dim. At that point, it stops decoding.
  1188. // No inverse transforms are applied yet.
  1189. global_modular.modular_header = TRY(read_modular_header(stream, image, entropy_decoder, global_modular.ma_tree, num_channels));
  1190. return global_modular;
  1191. }
  1192. ///
  1193. /// G.1 - LfGlobal
  1194. struct LfGlobal {
  1195. LfChannelDequantization lf_dequant;
  1196. GlobalModular gmodular;
  1197. };
  1198. static ErrorOr<LfGlobal> read_lf_global(LittleEndianInputBitStream& stream,
  1199. Image& image,
  1200. FrameHeader const& frame_header,
  1201. ImageMetadata const& metadata,
  1202. Optional<EntropyDecoder>& entropy_decoder)
  1203. {
  1204. LfGlobal lf_global;
  1205. if (frame_header.flags != FrameHeader::Flags::None)
  1206. TODO();
  1207. lf_global.lf_dequant = TRY(read_lf_channel_dequantization(stream));
  1208. if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
  1209. TODO();
  1210. lf_global.gmodular = TRY(read_global_modular(stream, image, frame_header, metadata, entropy_decoder));
  1211. return lf_global;
  1212. }
  1213. ///
  1214. /// G.2 - LfGroup
  1215. static ErrorOr<void> read_lf_group(LittleEndianInputBitStream&,
  1216. Image& image,
  1217. FrameHeader const& frame_header)
  1218. {
  1219. // LF coefficients
  1220. if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
  1221. TODO();
  1222. }
  1223. // ModularLfGroup
  1224. for (auto const& channel : image.channels()) {
  1225. if (channel.decoded())
  1226. continue;
  1227. if (channel.hshift() < 3 || channel.vshift() < 3)
  1228. continue;
  1229. // This code actually only detect that we need to read a null image
  1230. // so a no-op. It should be fully rewritten when we add proper support
  1231. // for LfGroup.
  1232. TODO();
  1233. }
  1234. // HF metadata
  1235. if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
  1236. TODO();
  1237. }
  1238. return {};
  1239. }
  1240. ///
  1241. /// H.6 - Transformations
  1242. static void apply_rct(Image& image, TransformInfo const& transformation)
  1243. {
  1244. auto& channels = image.channels();
  1245. for (u32 y {}; y < channels[transformation.begin_c].height(); y++) {
  1246. for (u32 x {}; x < channels[transformation.begin_c].width(); x++) {
  1247. auto a = channels[transformation.begin_c + 0].get(x, y);
  1248. auto b = channels[transformation.begin_c + 1].get(x, y);
  1249. auto c = channels[transformation.begin_c + 2].get(x, y);
  1250. i32 d {};
  1251. i32 e {};
  1252. i32 f {};
  1253. auto const permutation = transformation.rct_type / 7;
  1254. auto const type = transformation.rct_type % 7;
  1255. if (type == 6) { // YCgCo
  1256. auto const tmp = a - (c >> 1);
  1257. e = c + tmp;
  1258. f = tmp - (b >> 1);
  1259. d = f + b;
  1260. } else {
  1261. if (type & 1)
  1262. c = c + a;
  1263. if ((type >> 1) == 1)
  1264. b = b + a;
  1265. if ((type >> 1) == 2)
  1266. b = b + ((a + c) >> 1);
  1267. d = a;
  1268. e = b;
  1269. f = c;
  1270. }
  1271. Array<i32, 3> v {};
  1272. v[permutation % 3] = d;
  1273. v[(permutation + 1 + (permutation / 3)) % 3] = e;
  1274. v[(permutation + 2 - (permutation / 3)) % 3] = f;
  1275. channels[transformation.begin_c + 0].set(x, y, v[0]);
  1276. channels[transformation.begin_c + 1].set(x, y, v[1]);
  1277. channels[transformation.begin_c + 2].set(x, y, v[2]);
  1278. }
  1279. }
  1280. }
  1281. static void apply_transformation(Image& image, TransformInfo const& transformation)
  1282. {
  1283. switch (transformation.tr) {
  1284. case TransformInfo::TransformId::kRCT:
  1285. apply_rct(image, transformation);
  1286. break;
  1287. case TransformInfo::TransformId::kPalette:
  1288. case TransformInfo::TransformId::kSqueeze:
  1289. TODO();
  1290. default:
  1291. VERIFY_NOT_REACHED();
  1292. }
  1293. }
  1294. ///
  1295. /// G.3.2 - PassGroup
  1296. static ErrorOr<void> read_pass_group(LittleEndianInputBitStream& stream,
  1297. Image& image,
  1298. FrameHeader const& frame_header,
  1299. u32 group_dim)
  1300. {
  1301. if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
  1302. (void)stream;
  1303. TODO();
  1304. }
  1305. auto& channels = image.channels();
  1306. for (u16 i {}; i < channels.size(); ++i) {
  1307. // Skip meta-channels
  1308. // FIXME: Also test if the channel has already been decoded
  1309. // See: nb_meta_channels in the spec
  1310. bool const is_meta_channel = channels[i].width() <= group_dim
  1311. || channels[i].height() <= group_dim
  1312. || channels[i].hshift() >= 3
  1313. || channels[i].vshift() >= 3;
  1314. if (!is_meta_channel)
  1315. TODO();
  1316. }
  1317. return {};
  1318. }
  1319. ///
  1320. /// Table F.1 — Frame bundle
  1321. struct Frame {
  1322. FrameHeader frame_header;
  1323. TOC toc;
  1324. LfGlobal lf_global;
  1325. u64 width {};
  1326. u64 height {};
  1327. u64 num_groups {};
  1328. u64 num_lf_groups {};
  1329. };
  1330. static ErrorOr<Frame> read_frame(LittleEndianInputBitStream& stream,
  1331. Image& image,
  1332. SizeHeader const& size_header,
  1333. ImageMetadata const& metadata,
  1334. Optional<EntropyDecoder>& entropy_decoder)
  1335. {
  1336. // F.1 - General
  1337. // Each Frame is byte-aligned by invoking ZeroPadToByte() (B.2.7)
  1338. stream.align_to_byte_boundary();
  1339. Frame frame;
  1340. frame.frame_header = TRY(read_frame_header(stream, metadata));
  1341. if (!frame.frame_header.have_crop) {
  1342. frame.width = size_header.width;
  1343. frame.height = size_header.height;
  1344. } else {
  1345. TODO();
  1346. }
  1347. if (frame.frame_header.upsampling > 1) {
  1348. frame.width = ceil(static_cast<double>(frame.width) / frame.frame_header.upsampling);
  1349. frame.height = ceil(static_cast<double>(frame.height) / frame.frame_header.upsampling);
  1350. }
  1351. if (frame.frame_header.lf_level > 0)
  1352. TODO();
  1353. // F.2 - FrameHeader
  1354. auto const group_dim = 128 << frame.frame_header.group_size_shift;
  1355. auto const frame_width = static_cast<double>(frame.width);
  1356. auto const frame_height = static_cast<double>(frame.height);
  1357. frame.num_groups = ceil(frame_width / group_dim) * ceil(frame_height / group_dim);
  1358. frame.num_lf_groups = ceil(frame_width / (group_dim * 8)) * ceil(frame_height / (group_dim * 8));
  1359. frame.toc = TRY(read_toc(stream, frame.frame_header, frame.num_groups, frame.num_lf_groups));
  1360. image = TRY(Image::create({ frame.width, frame.height }, metadata));
  1361. frame.lf_global = TRY(read_lf_global(stream, image, frame.frame_header, metadata, entropy_decoder));
  1362. for (u32 i {}; i < frame.num_lf_groups; ++i)
  1363. TRY(read_lf_group(stream, image, frame.frame_header));
  1364. if (frame.frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
  1365. TODO();
  1366. }
  1367. auto const num_pass_group = frame.num_groups * frame.frame_header.passes.num_passes;
  1368. auto const& transform_infos = frame.lf_global.gmodular.modular_header.transform;
  1369. for (u64 i {}; i < num_pass_group; ++i)
  1370. TRY(read_pass_group(stream, image, frame.frame_header, group_dim));
  1371. // G.4.2 - Modular group data
  1372. // When all modular groups are decoded, the inverse transforms are applied to
  1373. // the at that point fully decoded GlobalModular image, as specified in H.6.
  1374. for (auto const& transformation : transform_infos.in_reverse())
  1375. apply_transformation(image, transformation);
  1376. return frame;
  1377. }
  1378. ///
  1379. /// 5.2 - Mirroring
  1380. static u32 mirror_1d(i32 coord, u32 size)
  1381. {
  1382. if (coord < 0)
  1383. return mirror_1d(-coord - 1, size);
  1384. else if (static_cast<u32>(coord) >= size)
  1385. return mirror_1d(2 * size - 1 - coord, size);
  1386. else
  1387. return coord;
  1388. }
  1389. ///
  1390. /// K - Image features
  1391. static ErrorOr<void> apply_upsampling(Image& image, ImageMetadata const& metadata, Frame const& frame)
  1392. {
  1393. Optional<u32> ec_max;
  1394. for (auto upsampling : frame.frame_header.ec_upsampling) {
  1395. if (!ec_max.has_value() || upsampling > *ec_max)
  1396. ec_max = upsampling;
  1397. }
  1398. if (frame.frame_header.upsampling > 1 || ec_max.value_or(0) > 1) {
  1399. if (ec_max.value_or(0) > 2)
  1400. TODO();
  1401. auto const k = frame.frame_header.upsampling;
  1402. auto weight = [k, &metadata](u8 index) -> double {
  1403. if (k == 2)
  1404. return metadata.up2_weight[index];
  1405. if (k == 4)
  1406. return metadata.up4_weight[index];
  1407. return metadata.up8_weight[index];
  1408. };
  1409. // FIXME: Use ec_upsampling for extra-channels
  1410. for (auto& channel : image.channels()) {
  1411. auto upsampled = TRY(Channel::create(k * channel.width(), k * channel.height()));
  1412. // Loop over the original image
  1413. for (u32 y {}; y < channel.height(); y++) {
  1414. for (u32 x {}; x < channel.width(); x++) {
  1415. // Loop over the upsampling factor
  1416. for (u8 kx {}; kx < k; ++kx) {
  1417. for (u8 ky {}; ky < k; ++ky) {
  1418. double sum {};
  1419. // Loop over the W window
  1420. double W_min = NumericLimits<double>::max();
  1421. double W_max = -NumericLimits<double>::max();
  1422. for (u8 ix {}; ix < 5; ++ix) {
  1423. for (u8 iy {}; iy < 5; ++iy) {
  1424. auto const j = (ky < k / 2) ? (iy + 5 * ky) : ((4 - iy) + 5 * (k - 1 - ky));
  1425. auto const i = (kx < k / 2) ? (ix + 5 * kx) : ((4 - ix) + 5 * (k - 1 - kx));
  1426. auto const minimum = min(i, j);
  1427. auto const maximum = max(i, j);
  1428. auto const index = 5 * k * minimum / 2 - minimum * (minimum - 1) / 2 + maximum - minimum;
  1429. auto const origin_sample_x = mirror_1d(x + ix - 2, channel.width());
  1430. auto const origin_sample_y = mirror_1d(y + iy - 2, channel.height());
  1431. auto const origin_sample = channel.get(origin_sample_x, origin_sample_y);
  1432. W_min = min(W_min, origin_sample);
  1433. W_max = max(W_max, origin_sample);
  1434. sum += origin_sample * weight(index);
  1435. }
  1436. }
  1437. // The resulting sample is clamped to the range [a, b] where a and b are
  1438. // the minimum and maximum of the samples in W.
  1439. sum = clamp(sum, W_min, W_max);
  1440. upsampled.set(x * k + kx, y * k + ky, sum);
  1441. }
  1442. }
  1443. }
  1444. }
  1445. channel = move(upsampled);
  1446. }
  1447. }
  1448. return {};
  1449. }
  1450. static ErrorOr<void> apply_image_features(Image& image, ImageMetadata const& metadata, Frame const& frame)
  1451. {
  1452. TRY(apply_upsampling(image, metadata, frame));
  1453. if (frame.frame_header.flags != FrameHeader::Flags::None)
  1454. TODO();
  1455. return {};
  1456. }
  1457. ///
  1458. /// L.4 - Extra channel rendering
  1459. static ErrorOr<void> render_extra_channels(Image&, ImageMetadata const& metadata)
  1460. {
  1461. for (u16 i = metadata.number_of_color_channels(); i < metadata.number_of_channels(); ++i) {
  1462. auto const ec_index = i - metadata.number_of_color_channels();
  1463. if (metadata.ec_info[ec_index].dim_shift != 0)
  1464. TODO();
  1465. }
  1466. return {};
  1467. }
  1468. ///
  1469. class JPEGXLLoadingContext {
  1470. public:
  1471. JPEGXLLoadingContext(NonnullOwnPtr<Stream> stream)
  1472. : m_stream(move(stream))
  1473. {
  1474. }
  1475. ErrorOr<void> decode_image_header()
  1476. {
  1477. constexpr auto JPEGXL_SIGNATURE = 0xFF0A;
  1478. auto const signature = TRY(m_stream.read_value<BigEndian<u16>>());
  1479. if (signature != JPEGXL_SIGNATURE)
  1480. return Error::from_string_literal("Unrecognized signature");
  1481. m_header = TRY(read_size_header(m_stream));
  1482. m_metadata = TRY(read_metadata_header(m_stream));
  1483. m_state = State::HeaderDecoded;
  1484. return {};
  1485. }
  1486. ErrorOr<void> decode_frame()
  1487. {
  1488. Image image {};
  1489. auto const frame = TRY(read_frame(m_stream, image, m_header, m_metadata, m_entropy_decoder));
  1490. if (frame.frame_header.restoration_filter.gab || frame.frame_header.restoration_filter.epf_iters != 0)
  1491. TODO();
  1492. TRY(apply_image_features(image, m_metadata, frame));
  1493. // FIXME: Do a proper color transformation with metadata.colour_encoding
  1494. if (m_metadata.xyb_encoded || frame.frame_header.do_YCbCr)
  1495. TODO();
  1496. TRY(render_extra_channels(image, m_metadata));
  1497. m_bitmap = TRY(image.to_bitmap(m_metadata));
  1498. return {};
  1499. }
  1500. ErrorOr<void> decode()
  1501. {
  1502. auto result = [this]() -> ErrorOr<void> {
  1503. // A.1 - Codestream structure
  1504. // The header is already decoded in JPEGXLImageDecoderPlugin::create()
  1505. if (m_metadata.colour_encoding.want_icc)
  1506. TODO();
  1507. if (m_metadata.preview.has_value())
  1508. TODO();
  1509. TRY(decode_frame());
  1510. return {};
  1511. }();
  1512. m_state = result.is_error() ? State::Error : State::FrameDecoded;
  1513. return result;
  1514. }
  1515. enum class State {
  1516. NotDecoded = 0,
  1517. Error,
  1518. HeaderDecoded,
  1519. FrameDecoded,
  1520. };
  1521. State state() const
  1522. {
  1523. return m_state;
  1524. }
  1525. IntSize size() const
  1526. {
  1527. return { m_header.width, m_header.height };
  1528. }
  1529. RefPtr<Bitmap> bitmap() const
  1530. {
  1531. return m_bitmap;
  1532. }
  1533. private:
  1534. State m_state { State::NotDecoded };
  1535. LittleEndianInputBitStream m_stream;
  1536. RefPtr<Gfx::Bitmap> m_bitmap;
  1537. Optional<EntropyDecoder> m_entropy_decoder {};
  1538. SizeHeader m_header;
  1539. ImageMetadata m_metadata;
  1540. FrameHeader m_frame_header;
  1541. TOC m_toc;
  1542. };
  1543. JPEGXLImageDecoderPlugin::JPEGXLImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
  1544. {
  1545. m_context = make<JPEGXLLoadingContext>(move(stream));
  1546. }
  1547. JPEGXLImageDecoderPlugin::~JPEGXLImageDecoderPlugin() = default;
  1548. IntSize JPEGXLImageDecoderPlugin::size()
  1549. {
  1550. return m_context->size();
  1551. }
  1552. bool JPEGXLImageDecoderPlugin::sniff(ReadonlyBytes data)
  1553. {
  1554. return data.size() > 2
  1555. && data.data()[0] == 0xFF
  1556. && data.data()[1] == 0x0A;
  1557. }
  1558. ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGXLImageDecoderPlugin::create(ReadonlyBytes data)
  1559. {
  1560. auto stream = TRY(try_make<FixedMemoryStream>(data));
  1561. auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JPEGXLImageDecoderPlugin(move(stream))));
  1562. TRY(plugin->m_context->decode_image_header());
  1563. return plugin;
  1564. }
  1565. bool JPEGXLImageDecoderPlugin::is_animated()
  1566. {
  1567. return false;
  1568. }
  1569. size_t JPEGXLImageDecoderPlugin::loop_count()
  1570. {
  1571. return 0;
  1572. }
  1573. size_t JPEGXLImageDecoderPlugin::frame_count()
  1574. {
  1575. return 1;
  1576. }
  1577. size_t JPEGXLImageDecoderPlugin::first_animated_frame_index()
  1578. {
  1579. return 0;
  1580. }
  1581. ErrorOr<ImageFrameDescriptor> JPEGXLImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
  1582. {
  1583. if (index > 0)
  1584. return Error::from_string_literal("JPEGXLImageDecoderPlugin: Invalid frame index");
  1585. if (m_context->state() == JPEGXLLoadingContext::State::Error)
  1586. return Error::from_string_literal("JPEGXLImageDecoderPlugin: Decoding failed");
  1587. if (m_context->state() < JPEGXLLoadingContext::State::FrameDecoded)
  1588. TRY(m_context->decode());
  1589. return ImageFrameDescriptor { m_context->bitmap(), 0 };
  1590. }
  1591. ErrorOr<Optional<ReadonlyBytes>> JPEGXLImageDecoderPlugin::icc_data()
  1592. {
  1593. return OptionalNone {};
  1594. }
  1595. }