/* * Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org> * * SPDX-License-Identifier: BSD-2-Clause */ #include <AK/Debug.h> #include <LibWasm/AbstractMachine/AbstractMachine.h> #include <LibWasm/AbstractMachine/BytecodeInterpreter.h> #include <LibWasm/AbstractMachine/Configuration.h> #include <LibWasm/Opcode.h> #include <LibWasm/Printer/Printer.h> #include <limits.h> #include <math.h> namespace Wasm { #define TRAP_IF_NOT(x) \ do { \ if (trap_if_not(x, #x)) { \ dbgln_if(WASM_TRACE_DEBUG, "Trapped because {} failed, at line {}", #x, __LINE__); \ return; \ } \ } while (false) #define TRAP_IF_NOT_NORETURN(x) \ do { \ if (trap_if_not(x, #x)) { \ dbgln_if(WASM_TRACE_DEBUG, "Trapped because {} failed, at line {}", #x, __LINE__); \ } \ } while (false) void BytecodeInterpreter::interpret(Configuration& configuration) { m_trap.clear(); auto& instructions = configuration.frame().expression().instructions(); auto max_ip_value = InstructionPointer { instructions.size() }; auto& current_ip_value = configuration.ip(); u64 executed_instructions = 0; while (current_ip_value < max_ip_value) { if (executed_instructions++ >= Constants::max_allowed_executed_instructions_per_call) [[unlikely]] { m_trap = Trap { "Exceeded maximum allowed number of instructions" }; return; } auto& instruction = instructions[current_ip_value.value()]; auto old_ip = current_ip_value; interpret(configuration, current_ip_value, instruction); if (m_trap.has_value()) return; if (current_ip_value == old_ip) // If no jump occurred ++current_ip_value; } } void BytecodeInterpreter::branch_to_label(Configuration& configuration, LabelIndex index) { dbgln_if(WASM_TRACE_DEBUG, "Branch to label with index {}...", index.value()); auto label = configuration.nth_label(index.value()); TRAP_IF_NOT(label.has_value()); dbgln_if(WASM_TRACE_DEBUG, "...which is actually IP {}, and has {} result(s)", label->continuation().value(), label->arity()); auto results = pop_values(configuration, label->arity()); size_t drop_count = index.value() + 1; for (; !configuration.stack().is_empty();) { auto& entry = configuration.stack().peek(); if (entry.has<Label>()) { if (--drop_count == 0) break; } configuration.stack().pop(); } for (auto& result : results) configuration.stack().push(move(result)); configuration.ip() = label->continuation(); } template<typename ReadType, typename PushType> void BytecodeInterpreter::load_and_push(Configuration& configuration, Instruction const& instruction) { auto& address = configuration.frame().module().memories().first(); auto memory = configuration.store().get(address); if (!memory) { m_trap = Trap { "Nonexistent memory" }; return; } auto& arg = instruction.arguments().get<Instruction::MemoryArgument>(); TRAP_IF_NOT(!configuration.stack().is_empty()); auto& entry = configuration.stack().peek(); TRAP_IF_NOT(entry.has<Value>()); auto base = entry.get<Value>().to<i32>(); if (!base.has_value()) { m_trap = Trap { "Memory access out of bounds" }; return; } auto instance_address = base.value() + static_cast<i64>(arg.offset); if (instance_address < 0 || static_cast<u64>(instance_address + sizeof(ReadType)) > memory->size()) { m_trap = Trap { "Memory access out of bounds" }; dbgln("LibWasm: Memory access out of bounds (expected 0 <= {} and {} <= {})", instance_address, instance_address + sizeof(ReadType), memory->size()); return; } dbgln_if(WASM_TRACE_DEBUG, "load({} : {}) -> stack", instance_address, sizeof(ReadType)); auto slice = memory->data().bytes().slice(instance_address, sizeof(ReadType)); configuration.stack().peek() = Value(static_cast<PushType>(read_value<ReadType>(slice))); } void BytecodeInterpreter::store_to_memory(Configuration& configuration, Instruction const& instruction, ReadonlyBytes data) { auto& address = configuration.frame().module().memories().first(); auto memory = configuration.store().get(address); TRAP_IF_NOT(memory); auto& arg = instruction.arguments().get<Instruction::MemoryArgument>(); TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto base = entry.get<Value>().to<i32>(); TRAP_IF_NOT(base.has_value()); auto instance_address = base.value() + static_cast<i64>(arg.offset); if (instance_address < 0 || static_cast<u64>(instance_address + data.size()) > memory->size()) { m_trap = Trap { "Memory access out of bounds" }; dbgln("LibWasm: Memory access out of bounds (expected 0 <= {} and {} <= {})", instance_address, instance_address + data.size(), memory->size()); return; } dbgln_if(WASM_TRACE_DEBUG, "tempoaray({}b) -> store({})", data.size(), instance_address); data.copy_to(memory->data().bytes().slice(instance_address, data.size())); } void BytecodeInterpreter::call_address(Configuration& configuration, FunctionAddress address) { TRAP_IF_NOT(configuration.depth() <= Constants::max_allowed_call_stack_depth); auto instance = configuration.store().get(address); TRAP_IF_NOT(instance); FunctionType const* type { nullptr }; instance->visit([&](auto const& function) { type = &function.type(); }); TRAP_IF_NOT(type); TRAP_IF_NOT(configuration.stack().entries().size() > type->parameters().size()); Vector<Value> args; args.ensure_capacity(type->parameters().size()); auto span = configuration.stack().entries().span().slice_from_end(type->parameters().size()); for (auto& entry : span) { auto* ptr = entry.get_pointer<Value>(); TRAP_IF_NOT(ptr != nullptr); args.unchecked_append(*ptr); } configuration.stack().entries().remove(configuration.stack().size() - span.size(), span.size()); Result result { Trap { ""sv } }; { CallFrameHandle handle { *this, configuration }; result = configuration.call(*this, address, move(args)); } if (result.is_trap()) { m_trap = move(result.trap()); return; } configuration.stack().entries().ensure_capacity(configuration.stack().size() + result.values().size()); for (auto& entry : result.values()) configuration.stack().entries().unchecked_append(move(entry)); } #define BINARY_NUMERIC_OPERATION(type, operator, cast, ...) \ do { \ TRAP_IF_NOT(!configuration.stack().is_empty()); \ auto rhs_entry = configuration.stack().pop(); \ auto& lhs_entry = configuration.stack().peek(); \ TRAP_IF_NOT(rhs_entry.has<Value>()); \ TRAP_IF_NOT(lhs_entry.has<Value>()); \ auto rhs = rhs_entry.get<Value>().to<type>(); \ auto lhs = lhs_entry.get<Value>().to<type>(); \ TRAP_IF_NOT(lhs.has_value()); \ TRAP_IF_NOT(rhs.has_value()); \ __VA_ARGS__; \ auto result = lhs.value() operator rhs.value(); \ dbgln_if(WASM_TRACE_DEBUG, "{} {} {} = {}", lhs.value(), #operator, rhs.value(), result); \ configuration.stack().peek() = Value(cast(result)); \ return; \ } while (false) #define OVF_CHECKED_BINARY_NUMERIC_OPERATION(type, operator, cast, ...) \ do { \ TRAP_IF_NOT(!configuration.stack().is_empty()); \ auto rhs_entry = configuration.stack().pop(); \ auto& lhs_entry = configuration.stack().peek(); \ TRAP_IF_NOT(rhs_entry.has<Value>()); \ TRAP_IF_NOT(lhs_entry.has<Value>()); \ auto rhs = rhs_entry.get<Value>().to<type>(); \ auto ulhs = lhs_entry.get<Value>().to<type>(); \ TRAP_IF_NOT(ulhs.has_value()); \ TRAP_IF_NOT(rhs.has_value()); \ dbgln_if(WASM_TRACE_DEBUG, "{} {} {} = ??", ulhs.value(), #operator, rhs.value()); \ __VA_ARGS__; \ Checked<type> lhs = ulhs.value(); \ lhs operator##= rhs.value(); \ TRAP_IF_NOT(!lhs.has_overflow()); \ auto result = lhs.value(); \ dbgln_if(WASM_TRACE_DEBUG, "{} {} {} = {}", ulhs.value(), #operator, rhs.value(), result); \ configuration.stack().peek() = Value(cast(result)); \ return; \ } while (false) #define BINARY_PREFIX_NUMERIC_OPERATION(type, operation, cast, ...) \ do { \ TRAP_IF_NOT(!configuration.stack().is_empty()); \ auto rhs_entry = configuration.stack().pop(); \ auto& lhs_entry = configuration.stack().peek(); \ TRAP_IF_NOT(rhs_entry.has<Value>()); \ TRAP_IF_NOT(lhs_entry.has<Value>()); \ auto rhs = rhs_entry.get<Value>().to<type>(); \ auto lhs = lhs_entry.get<Value>().to<type>(); \ TRAP_IF_NOT(lhs.has_value()); \ TRAP_IF_NOT(rhs.has_value()); \ auto result = operation(lhs.value(), rhs.value()); \ dbgln_if(WASM_TRACE_DEBUG, "{}({} {}) = {}", #operation, lhs.value(), rhs.value(), result); \ configuration.stack().peek() = Value(cast(result)); \ return; \ } while (false) #define UNARY_MAP(pop_type, operation, ...) \ do { \ TRAP_IF_NOT(!configuration.stack().is_empty()); \ auto& entry = configuration.stack().peek(); \ TRAP_IF_NOT(entry.has<Value>()); \ auto value = entry.get<Value>().to<pop_type>(); \ TRAP_IF_NOT(value.has_value()); \ auto result = operation(value.value()); \ dbgln_if(WASM_TRACE_DEBUG, "map({}) {} = {}", #operation, value.value(), result); \ configuration.stack().peek() = Value(__VA_ARGS__(result)); \ return; \ } while (false) #define UNARY_NUMERIC_OPERATION(type, operation) \ UNARY_MAP(type, operation, type) #define LOAD_AND_PUSH(read_type, push_type) \ do { \ return load_and_push<read_type, push_type>(configuration, instruction); \ } while (false) #define POP_AND_STORE(pop_type, store_type) \ do { \ TRAP_IF_NOT(!configuration.stack().is_empty()); \ auto entry = configuration.stack().pop(); \ TRAP_IF_NOT(entry.has<Value>()); \ auto value = ConvertToRaw<store_type> {}(*entry.get<Value>().to<pop_type>()); \ dbgln_if(WASM_TRACE_DEBUG, "stack({}) -> temporary({}b)", value, sizeof(store_type)); \ store_to_memory(configuration, instruction, { &value, sizeof(store_type) }); \ return; \ } while (false) template<typename T> T BytecodeInterpreter::read_value(ReadonlyBytes data) { LittleEndian<T> value; InputMemoryStream stream { data }; stream >> value; if (stream.handle_any_error()) { dbgln("Read from {} failed", data.data()); m_trap = Trap { "Read from memory failed" }; } return value; } template<> float BytecodeInterpreter::read_value<float>(ReadonlyBytes data) { InputMemoryStream stream { data }; LittleEndian<u32> raw_value; stream >> raw_value; if (stream.handle_any_error()) m_trap = Trap { "Read from memory failed" }; return bit_cast<float>(static_cast<u32>(raw_value)); } template<> double BytecodeInterpreter::read_value<double>(ReadonlyBytes data) { InputMemoryStream stream { data }; LittleEndian<u64> raw_value; stream >> raw_value; if (stream.handle_any_error()) m_trap = Trap { "Read from memory failed" }; return bit_cast<double>(static_cast<u64>(raw_value)); } template<typename T> struct ConvertToRaw { T operator()(T value) { return LittleEndian<T>(value); } }; template<> struct ConvertToRaw<float> { u32 operator()(float value) { LittleEndian<u32> res; ReadonlyBytes bytes { &value, sizeof(float) }; InputMemoryStream stream { bytes }; stream >> res; VERIFY(!stream.has_any_error()); return static_cast<u32>(res); } }; template<> struct ConvertToRaw<double> { u64 operator()(double value) { LittleEndian<u64> res; ReadonlyBytes bytes { &value, sizeof(double) }; InputMemoryStream stream { bytes }; stream >> res; VERIFY(!stream.has_any_error()); return static_cast<u64>(res); } }; template<typename V, typename T> MakeSigned<T> BytecodeInterpreter::checked_signed_truncate(V value) { if (isnan(value) || isinf(value)) { // "undefined", let's just trap. m_trap = Trap { "Signed truncation undefined behaviour" }; return 0; } double truncated; if constexpr (IsSame<float, V>) truncated = truncf(value); else truncated = trunc(value); using SignedT = MakeSigned<T>; if (NumericLimits<SignedT>::min() <= truncated && static_cast<double>(NumericLimits<SignedT>::max()) >= truncated) return static_cast<SignedT>(truncated); dbgln_if(WASM_TRACE_DEBUG, "Truncate out of range error"); m_trap = Trap { "Signed truncation out of range" }; return true; } template<typename V, typename T> MakeUnsigned<T> BytecodeInterpreter::checked_unsigned_truncate(V value) { if (isnan(value) || isinf(value)) { // "undefined", let's just trap. m_trap = Trap { "Unsigned truncation undefined behaviour" }; return 0; } double truncated; if constexpr (IsSame<float, V>) truncated = truncf(value); else truncated = trunc(value); using UnsignedT = MakeUnsigned<T>; if (NumericLimits<UnsignedT>::min() <= truncated && static_cast<double>(NumericLimits<UnsignedT>::max()) >= truncated) return static_cast<UnsignedT>(truncated); dbgln_if(WASM_TRACE_DEBUG, "Truncate out of range error"); m_trap = Trap { "Unsigned truncation out of range" }; return true; } Vector<Value> BytecodeInterpreter::pop_values(Configuration& configuration, size_t count) { Vector<Value> results; results.resize(count); for (size_t i = 0; i < count; ++i) { auto top_of_stack = configuration.stack().pop(); if (auto value = top_of_stack.get_pointer<Value>()) results[i] = move(*value); else TRAP_IF_NOT_NORETURN(value); } return results; } template<typename T, typename R> ALWAYS_INLINE static T rotl(T value, R shift) { // generates a single 'rol' instruction if shift is positive // otherwise generate a `ror` auto const mask = CHAR_BIT * sizeof(T) - 1; shift &= mask; return (value << shift) | (value >> ((-shift) & mask)); } template<typename T, typename R> ALWAYS_INLINE static T rotr(T value, R shift) { // generates a single 'ror' instruction if shift is positive // otherwise generate a `rol` auto const mask = CHAR_BIT * sizeof(T) - 1; shift &= mask; return (value >> shift) | (value << ((-shift) & mask)); } template<typename T> ALWAYS_INLINE static i32 clz(T value) { if (value == 0) return sizeof(T) * CHAR_BIT; if constexpr (sizeof(T) == 4) return __builtin_clz(value); else if constexpr (sizeof(T) == 8) return __builtin_clzll(value); else VERIFY_NOT_REACHED(); } template<typename T> ALWAYS_INLINE static i32 ctz(T value) { if (value == 0) return sizeof(T) * CHAR_BIT; if constexpr (sizeof(T) == 4) return __builtin_ctz(value); else if constexpr (sizeof(T) == 8) return __builtin_ctzll(value); else VERIFY_NOT_REACHED(); } template<typename InputT, typename OutputT> ALWAYS_INLINE static OutputT extend_signed(InputT value) { // Note: C++ will take care of sign extension. return value; } template<typename TruncT, typename T> ALWAYS_INLINE static TruncT saturating_truncate(T value) { if (isnan(value)) return 0; if (isinf(value)) { if (value < 0) return NumericLimits<TruncT>::min(); return NumericLimits<TruncT>::max(); } constexpr auto convert = [](auto truncated_value) { if (truncated_value < NumericLimits<TruncT>::min()) return NumericLimits<TruncT>::min(); if (static_cast<double>(truncated_value) > static_cast<double>(NumericLimits<TruncT>::max())) return NumericLimits<TruncT>::max(); return static_cast<TruncT>(truncated_value); }; if constexpr (IsSame<T, float>) return convert(truncf(value)); else return convert(trunc(value)); } template<typename T> ALWAYS_INLINE static T float_max(T lhs, T rhs) { if (isnan(lhs)) return lhs; if (isnan(rhs)) return rhs; if (isinf(lhs)) return lhs > 0 ? lhs : rhs; if (isinf(rhs)) return rhs > 0 ? rhs : lhs; return max(lhs, rhs); } template<typename T> ALWAYS_INLINE static T float_min(T lhs, T rhs) { if (isnan(lhs)) return lhs; if (isnan(rhs)) return rhs; if (isinf(lhs)) return lhs > 0 ? rhs : lhs; if (isinf(rhs)) return rhs > 0 ? lhs : rhs; return min(lhs, rhs); } void BytecodeInterpreter::interpret(Configuration& configuration, InstructionPointer& ip, Instruction const& instruction) { dbgln_if(WASM_TRACE_DEBUG, "Executing instruction {} at ip {}", instruction_name(instruction.opcode()), ip.value()); switch (instruction.opcode().value()) { case Instructions::unreachable.value(): m_trap = Trap { "Unreachable" }; return; case Instructions::nop.value(): return; case Instructions::local_get.value(): configuration.stack().push(Value(configuration.frame().locals()[instruction.arguments().get<LocalIndex>().value()])); return; case Instructions::local_set.value(): { TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); configuration.frame().locals()[instruction.arguments().get<LocalIndex>().value()] = move(entry.get<Value>()); return; } case Instructions::i32_const.value(): configuration.stack().push(Value(ValueType { ValueType::I32 }, static_cast<i64>(instruction.arguments().get<i32>()))); return; case Instructions::i64_const.value(): configuration.stack().push(Value(ValueType { ValueType::I64 }, instruction.arguments().get<i64>())); return; case Instructions::f32_const.value(): configuration.stack().push(Value(ValueType { ValueType::F32 }, static_cast<double>(instruction.arguments().get<float>()))); return; case Instructions::f64_const.value(): configuration.stack().push(Value(ValueType { ValueType::F64 }, instruction.arguments().get<double>())); return; case Instructions::block.value(): { size_t arity = 0; auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>(); if (args.block_type.kind() != BlockType::Empty) arity = 1; configuration.stack().push(Label(arity, args.end_ip)); return; } case Instructions::loop.value(): { size_t arity = 0; auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>(); if (args.block_type.kind() != BlockType::Empty) arity = 1; configuration.stack().push(Label(arity, ip.value() + 1)); return; } case Instructions::if_.value(): { size_t arity = 0; auto& args = instruction.arguments().get<Instruction::StructuredInstructionArgs>(); if (args.block_type.kind() != BlockType::Empty) arity = 1; TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto value = entry.get<Value>().to<i32>(); TRAP_IF_NOT(value.has_value()); auto end_label = Label(arity, args.end_ip.value()); if (value.value() == 0) { if (args.else_ip.has_value()) { configuration.ip() = args.else_ip.value(); configuration.stack().push(move(end_label)); } else { configuration.ip() = args.end_ip.value() + 1; } } else { configuration.stack().push(move(end_label)); } return; } case Instructions::structured_end.value(): case Instructions::structured_else.value(): { auto label = configuration.nth_label(0); TRAP_IF_NOT(label.has_value()); size_t end = configuration.stack().size() - label->arity() - 1; size_t start = end; while (start > 0 && start < configuration.stack().size() && !configuration.stack().entries()[start].has<Label>()) --start; configuration.stack().entries().remove(start, end - start + 1); if (instruction.opcode() == Instructions::structured_end) return; // Jump to the end label configuration.ip() = label->continuation(); return; } case Instructions::return_.value(): { auto& frame = configuration.frame(); size_t end = configuration.stack().size() - frame.arity(); size_t start = end; for (; start + 1 > 0 && start < configuration.stack().size(); --start) { auto& entry = configuration.stack().entries()[start]; if (entry.has<Frame>()) { // Leave the frame, _and_ its label. start += 2; break; } } configuration.stack().entries().remove(start, end - start); // Jump past the call/indirect instruction configuration.ip() = configuration.frame().expression().instructions().size(); return; } case Instructions::br.value(): return branch_to_label(configuration, instruction.arguments().get<LabelIndex>()); case Instructions::br_if.value(): { TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); if (entry.get<Value>().to<i32>().value_or(0) == 0) return; return branch_to_label(configuration, instruction.arguments().get<LabelIndex>()); } case Instructions::br_table.value(): { auto& arguments = instruction.arguments().get<Instruction::TableBranchArgs>(); TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto maybe_i = entry.get<Value>().to<i32>(); TRAP_IF_NOT(maybe_i.has_value()); if (0 <= *maybe_i) { size_t i = *maybe_i; if (i < arguments.labels.size()) return branch_to_label(configuration, arguments.labels[i]); } return branch_to_label(configuration, arguments.default_); } case Instructions::call.value(): { auto index = instruction.arguments().get<FunctionIndex>(); TRAP_IF_NOT(index.value() < configuration.frame().module().functions().size()); auto address = configuration.frame().module().functions()[index.value()]; dbgln_if(WASM_TRACE_DEBUG, "call({})", address.value()); call_address(configuration, address); return; } case Instructions::call_indirect.value(): { auto& args = instruction.arguments().get<Instruction::IndirectCallArgs>(); TRAP_IF_NOT(args.table.value() < configuration.frame().module().tables().size()); auto table_address = configuration.frame().module().tables()[args.table.value()]; auto table_instance = configuration.store().get(table_address); TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto index = entry.get<Value>().to<i32>(); TRAP_IF_NOT(index.has_value()); TRAP_IF_NOT(index.value() >= 0); TRAP_IF_NOT(static_cast<size_t>(index.value()) < table_instance->elements().size()); auto element = table_instance->elements()[index.value()]; TRAP_IF_NOT(element.has_value()); TRAP_IF_NOT(element->ref().has<Reference::Func>()); auto address = element->ref().get<Reference::Func>().address; dbgln_if(WASM_TRACE_DEBUG, "call_indirect({} -> {})", index.value(), address.value()); call_address(configuration, address); return; } case Instructions::i32_load.value(): LOAD_AND_PUSH(i32, i32); case Instructions::i64_load.value(): LOAD_AND_PUSH(i64, i64); case Instructions::f32_load.value(): LOAD_AND_PUSH(float, float); case Instructions::f64_load.value(): LOAD_AND_PUSH(double, double); case Instructions::i32_load8_s.value(): LOAD_AND_PUSH(i8, i32); case Instructions::i32_load8_u.value(): LOAD_AND_PUSH(u8, i32); case Instructions::i32_load16_s.value(): LOAD_AND_PUSH(i16, i32); case Instructions::i32_load16_u.value(): LOAD_AND_PUSH(u16, i32); case Instructions::i64_load8_s.value(): LOAD_AND_PUSH(i8, i64); case Instructions::i64_load8_u.value(): LOAD_AND_PUSH(u8, i64); case Instructions::i64_load16_s.value(): LOAD_AND_PUSH(i16, i64); case Instructions::i64_load16_u.value(): LOAD_AND_PUSH(u16, i64); case Instructions::i64_load32_s.value(): LOAD_AND_PUSH(i32, i64); case Instructions::i64_load32_u.value(): LOAD_AND_PUSH(u32, i64); case Instructions::i32_store.value(): POP_AND_STORE(i32, i32); case Instructions::i64_store.value(): POP_AND_STORE(i64, i64); case Instructions::f32_store.value(): POP_AND_STORE(float, float); case Instructions::f64_store.value(): POP_AND_STORE(double, double); case Instructions::i32_store8.value(): POP_AND_STORE(i32, i8); case Instructions::i32_store16.value(): POP_AND_STORE(i32, i16); case Instructions::i64_store8.value(): POP_AND_STORE(i64, i8); case Instructions::i64_store16.value(): POP_AND_STORE(i64, i16); case Instructions::i64_store32.value(): POP_AND_STORE(i64, i32); case Instructions::local_tee.value(): { TRAP_IF_NOT(!configuration.stack().is_empty()); auto& entry = configuration.stack().peek(); TRAP_IF_NOT(entry.has<Value>()); auto value = entry.get<Value>(); auto local_index = instruction.arguments().get<LocalIndex>(); TRAP_IF_NOT(configuration.frame().locals().size() > local_index.value()); dbgln_if(WASM_TRACE_DEBUG, "stack:peek -> locals({})", local_index.value()); configuration.frame().locals()[local_index.value()] = move(value); return; } case Instructions::global_get.value(): { auto global_index = instruction.arguments().get<GlobalIndex>(); TRAP_IF_NOT(configuration.frame().module().globals().size() > global_index.value()); auto address = configuration.frame().module().globals()[global_index.value()]; dbgln_if(WASM_TRACE_DEBUG, "global({}) -> stack", address.value()); auto global = configuration.store().get(address); configuration.stack().push(Value(global->value())); return; } case Instructions::global_set.value(): { auto global_index = instruction.arguments().get<GlobalIndex>(); TRAP_IF_NOT(configuration.frame().module().globals().size() > global_index.value()); auto address = configuration.frame().module().globals()[global_index.value()]; TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto value = entry.get<Value>(); dbgln_if(WASM_TRACE_DEBUG, "stack -> global({})", address.value()); auto global = configuration.store().get(address); global->set_value(move(value)); return; } case Instructions::memory_size.value(): { TRAP_IF_NOT(configuration.frame().module().memories().size() > 0); auto address = configuration.frame().module().memories()[0]; auto instance = configuration.store().get(address); auto pages = instance->size() / Constants::page_size; dbgln_if(WASM_TRACE_DEBUG, "memory.size -> stack({})", pages); configuration.stack().push(Value((i32)pages)); return; } case Instructions::memory_grow.value(): { TRAP_IF_NOT(configuration.frame().module().memories().size() > 0); auto address = configuration.frame().module().memories()[0]; auto instance = configuration.store().get(address); i32 old_pages = instance->size() / Constants::page_size; TRAP_IF_NOT(!configuration.stack().is_empty()); auto& entry = configuration.stack().peek(); TRAP_IF_NOT(entry.has<Value>()); auto new_pages = entry.get<Value>().to<i32>(); TRAP_IF_NOT(new_pages.has_value()); dbgln_if(WASM_TRACE_DEBUG, "memory.grow({}), previously {} pages...", *new_pages, old_pages); if (instance->grow(new_pages.value() * Constants::page_size)) configuration.stack().peek() = Value((i32)old_pages); else configuration.stack().peek() = Value((i32)-1); return; } case Instructions::table_get.value(): case Instructions::table_set.value(): goto unimplemented; case Instructions::ref_null.value(): { auto type = instruction.arguments().get<ValueType>(); TRAP_IF_NOT(type.is_reference()); configuration.stack().push(Value(Reference(Reference::Null { type }))); return; }; case Instructions::ref_func.value(): { auto index = instruction.arguments().get<FunctionIndex>().value(); auto& functions = configuration.frame().module().functions(); TRAP_IF_NOT(functions.size() > index); auto address = functions[index]; configuration.stack().push(Value(ValueType(ValueType::FunctionReference), address.value())); return; } case Instructions::ref_is_null.value(): { TRAP_IF_NOT(!configuration.stack().is_empty()); auto top = configuration.stack().peek().get_pointer<Value>(); TRAP_IF_NOT(top); TRAP_IF_NOT(top->type().is_reference()); auto is_null = top->to<Reference::Null>().has_value(); configuration.stack().peek() = Value(ValueType(ValueType::I32), static_cast<u64>(is_null ? 1 : 0)); return; } case Instructions::drop.value(): TRAP_IF_NOT(!configuration.stack().is_empty()); configuration.stack().pop(); return; case Instructions::select.value(): case Instructions::select_typed.value(): { // Note: The type seems to only be used for validation. TRAP_IF_NOT(!configuration.stack().is_empty()); auto entry = configuration.stack().pop(); TRAP_IF_NOT(entry.has<Value>()); auto value = entry.get<Value>().to<i32>(); TRAP_IF_NOT(value.has_value()); dbgln_if(WASM_TRACE_DEBUG, "select({})", value.value()); auto rhs_entry = configuration.stack().pop(); TRAP_IF_NOT(rhs_entry.has<Value>()); auto& lhs_entry = configuration.stack().peek(); TRAP_IF_NOT(lhs_entry.has<Value>()); auto rhs = move(rhs_entry.get<Value>()); auto lhs = move(lhs_entry.get<Value>()); configuration.stack().peek() = value.value() != 0 ? move(lhs) : move(rhs); return; } case Instructions::i32_eqz.value(): UNARY_NUMERIC_OPERATION(i32, 0 ==); case Instructions::i32_eq.value(): BINARY_NUMERIC_OPERATION(i32, ==, i32); case Instructions::i32_ne.value(): BINARY_NUMERIC_OPERATION(i32, !=, i32); case Instructions::i32_lts.value(): BINARY_NUMERIC_OPERATION(i32, <, i32); case Instructions::i32_ltu.value(): BINARY_NUMERIC_OPERATION(u32, <, i32); case Instructions::i32_gts.value(): BINARY_NUMERIC_OPERATION(i32, >, i32); case Instructions::i32_gtu.value(): BINARY_NUMERIC_OPERATION(u32, >, i32); case Instructions::i32_les.value(): BINARY_NUMERIC_OPERATION(i32, <=, i32); case Instructions::i32_leu.value(): BINARY_NUMERIC_OPERATION(u32, <=, i32); case Instructions::i32_ges.value(): BINARY_NUMERIC_OPERATION(i32, >=, i32); case Instructions::i32_geu.value(): BINARY_NUMERIC_OPERATION(u32, >=, i32); case Instructions::i64_eqz.value(): UNARY_NUMERIC_OPERATION(i64, 0ull ==); case Instructions::i64_eq.value(): BINARY_NUMERIC_OPERATION(i64, ==, i32); case Instructions::i64_ne.value(): BINARY_NUMERIC_OPERATION(i64, !=, i32); case Instructions::i64_lts.value(): BINARY_NUMERIC_OPERATION(i64, <, i32); case Instructions::i64_ltu.value(): BINARY_NUMERIC_OPERATION(u64, <, i32); case Instructions::i64_gts.value(): BINARY_NUMERIC_OPERATION(i64, >, i32); case Instructions::i64_gtu.value(): BINARY_NUMERIC_OPERATION(u64, >, i32); case Instructions::i64_les.value(): BINARY_NUMERIC_OPERATION(i64, <=, i32); case Instructions::i64_leu.value(): BINARY_NUMERIC_OPERATION(u64, <=, i32); case Instructions::i64_ges.value(): BINARY_NUMERIC_OPERATION(i64, >=, i32); case Instructions::i64_geu.value(): BINARY_NUMERIC_OPERATION(u64, >=, i32); case Instructions::f32_eq.value(): BINARY_NUMERIC_OPERATION(float, ==, i32); case Instructions::f32_ne.value(): BINARY_NUMERIC_OPERATION(float, !=, i32); case Instructions::f32_lt.value(): BINARY_NUMERIC_OPERATION(float, <, i32); case Instructions::f32_gt.value(): BINARY_NUMERIC_OPERATION(float, >, i32); case Instructions::f32_le.value(): BINARY_NUMERIC_OPERATION(float, <=, i32); case Instructions::f32_ge.value(): BINARY_NUMERIC_OPERATION(float, >=, i32); case Instructions::f64_eq.value(): BINARY_NUMERIC_OPERATION(double, ==, i32); case Instructions::f64_ne.value(): BINARY_NUMERIC_OPERATION(double, !=, i32); case Instructions::f64_lt.value(): BINARY_NUMERIC_OPERATION(double, <, i32); case Instructions::f64_gt.value(): BINARY_NUMERIC_OPERATION(double, >, i32); case Instructions::f64_le.value(): BINARY_NUMERIC_OPERATION(double, <=, i32); case Instructions::f64_ge.value(): BINARY_NUMERIC_OPERATION(double, >, i32); case Instructions::i32_clz.value(): UNARY_NUMERIC_OPERATION(i32, clz); case Instructions::i32_ctz.value(): UNARY_NUMERIC_OPERATION(i32, ctz); case Instructions::i32_popcnt.value(): UNARY_NUMERIC_OPERATION(i32, __builtin_popcount); case Instructions::i32_add.value(): BINARY_NUMERIC_OPERATION(i32, +, i32); case Instructions::i32_sub.value(): BINARY_NUMERIC_OPERATION(i32, -, i32); case Instructions::i32_mul.value(): BINARY_NUMERIC_OPERATION(i32, *, i32); case Instructions::i32_divs.value(): BINARY_NUMERIC_OPERATION(i32, /, i32, TRAP_IF_NOT(!(Checked<i32>(lhs.value()) /= rhs.value()).has_overflow())); case Instructions::i32_divu.value(): BINARY_NUMERIC_OPERATION(u32, /, i32, TRAP_IF_NOT(rhs.value() != 0)); case Instructions::i32_rems.value(): BINARY_NUMERIC_OPERATION(i32, %, i32, TRAP_IF_NOT(!(Checked<i32>(lhs.value()) /= rhs.value()).has_overflow())); case Instructions::i32_remu.value(): BINARY_NUMERIC_OPERATION(u32, %, i32, TRAP_IF_NOT(rhs.value() != 0)); case Instructions::i32_and.value(): BINARY_NUMERIC_OPERATION(i32, &, i32); case Instructions::i32_or.value(): BINARY_NUMERIC_OPERATION(i32, |, i32); case Instructions::i32_xor.value(): BINARY_NUMERIC_OPERATION(i32, ^, i32); case Instructions::i32_shl.value(): BINARY_NUMERIC_OPERATION(i32, <<, i32); case Instructions::i32_shrs.value(): BINARY_NUMERIC_OPERATION(i32, >>, i32); case Instructions::i32_shru.value(): BINARY_NUMERIC_OPERATION(u32, >>, i32); case Instructions::i32_rotl.value(): BINARY_PREFIX_NUMERIC_OPERATION(u32, rotl, i32); case Instructions::i32_rotr.value(): BINARY_PREFIX_NUMERIC_OPERATION(u32, rotr, i32); case Instructions::i64_clz.value(): UNARY_NUMERIC_OPERATION(i64, clz); case Instructions::i64_ctz.value(): UNARY_NUMERIC_OPERATION(i64, ctz); case Instructions::i64_popcnt.value(): UNARY_NUMERIC_OPERATION(i64, __builtin_popcountll); case Instructions::i64_add.value(): OVF_CHECKED_BINARY_NUMERIC_OPERATION(i64, +, i64); case Instructions::i64_sub.value(): OVF_CHECKED_BINARY_NUMERIC_OPERATION(i64, -, i64); case Instructions::i64_mul.value(): OVF_CHECKED_BINARY_NUMERIC_OPERATION(i64, *, i64); case Instructions::i64_divs.value(): OVF_CHECKED_BINARY_NUMERIC_OPERATION(i64, /, i64, TRAP_IF_NOT(rhs.value() != 0)); case Instructions::i64_divu.value(): OVF_CHECKED_BINARY_NUMERIC_OPERATION(u64, /, i64, TRAP_IF_NOT(rhs.value() != 0)); case Instructions::i64_rems.value(): BINARY_NUMERIC_OPERATION(i64, %, i64, TRAP_IF_NOT(!(Checked<i32>(lhs.value()) /= rhs.value()).has_overflow())); case Instructions::i64_remu.value(): BINARY_NUMERIC_OPERATION(u64, %, i64, TRAP_IF_NOT(rhs.value() != 0)); case Instructions::i64_and.value(): BINARY_NUMERIC_OPERATION(i64, &, i64); case Instructions::i64_or.value(): BINARY_NUMERIC_OPERATION(i64, |, i64); case Instructions::i64_xor.value(): BINARY_NUMERIC_OPERATION(i64, ^, i64); case Instructions::i64_shl.value(): BINARY_NUMERIC_OPERATION(i64, <<, i64); case Instructions::i64_shrs.value(): BINARY_NUMERIC_OPERATION(i64, >>, i64); case Instructions::i64_shru.value(): BINARY_NUMERIC_OPERATION(u64, >>, i64); case Instructions::i64_rotl.value(): BINARY_PREFIX_NUMERIC_OPERATION(u64, rotl, i64); case Instructions::i64_rotr.value(): BINARY_PREFIX_NUMERIC_OPERATION(u64, rotr, i64); case Instructions::f32_abs.value(): UNARY_NUMERIC_OPERATION(float, fabsf); case Instructions::f32_neg.value(): UNARY_NUMERIC_OPERATION(float, -); case Instructions::f32_ceil.value(): UNARY_NUMERIC_OPERATION(float, ceilf); case Instructions::f32_floor.value(): UNARY_NUMERIC_OPERATION(float, floorf); case Instructions::f32_trunc.value(): UNARY_NUMERIC_OPERATION(float, truncf); case Instructions::f32_nearest.value(): UNARY_NUMERIC_OPERATION(float, roundf); case Instructions::f32_sqrt.value(): UNARY_NUMERIC_OPERATION(float, sqrtf); case Instructions::f32_add.value(): BINARY_NUMERIC_OPERATION(float, +, float); case Instructions::f32_sub.value(): BINARY_NUMERIC_OPERATION(float, -, float); case Instructions::f32_mul.value(): BINARY_NUMERIC_OPERATION(float, *, float); case Instructions::f32_div.value(): BINARY_NUMERIC_OPERATION(float, /, float); case Instructions::f32_min.value(): BINARY_PREFIX_NUMERIC_OPERATION(float, float_min, float); case Instructions::f32_max.value(): BINARY_PREFIX_NUMERIC_OPERATION(float, float_max, float); case Instructions::f32_copysign.value(): BINARY_PREFIX_NUMERIC_OPERATION(float, copysignf, float); case Instructions::f64_abs.value(): UNARY_NUMERIC_OPERATION(double, fabs); case Instructions::f64_neg.value(): UNARY_NUMERIC_OPERATION(double, -); case Instructions::f64_ceil.value(): UNARY_NUMERIC_OPERATION(double, ceil); case Instructions::f64_floor.value(): UNARY_NUMERIC_OPERATION(double, floor); case Instructions::f64_trunc.value(): UNARY_NUMERIC_OPERATION(double, trunc); case Instructions::f64_nearest.value(): UNARY_NUMERIC_OPERATION(double, round); case Instructions::f64_sqrt.value(): UNARY_NUMERIC_OPERATION(double, sqrt); case Instructions::f64_add.value(): BINARY_NUMERIC_OPERATION(double, +, double); case Instructions::f64_sub.value(): BINARY_NUMERIC_OPERATION(double, -, double); case Instructions::f64_mul.value(): BINARY_NUMERIC_OPERATION(double, *, double); case Instructions::f64_div.value(): BINARY_NUMERIC_OPERATION(double, /, double); case Instructions::f64_min.value(): BINARY_PREFIX_NUMERIC_OPERATION(double, float_min, double); case Instructions::f64_max.value(): BINARY_PREFIX_NUMERIC_OPERATION(double, float_max, double); case Instructions::f64_copysign.value(): BINARY_PREFIX_NUMERIC_OPERATION(double, copysign, double); case Instructions::i32_wrap_i64.value(): UNARY_MAP(i64, i32, i32); case Instructions::i32_trunc_sf32.value(): { auto fn = [this](auto& v) { return checked_signed_truncate<float, i32>(v); }; UNARY_MAP(float, fn, i32); } case Instructions::i32_trunc_uf32.value(): { auto fn = [this](auto& value) { return checked_unsigned_truncate<float, i32>(value); }; UNARY_MAP(float, fn, i32); } case Instructions::i32_trunc_sf64.value(): { auto fn = [this](auto& value) { return checked_signed_truncate<double, i32>(value); }; UNARY_MAP(double, fn, i32); } case Instructions::i32_trunc_uf64.value(): { auto fn = [this](auto& value) { return checked_unsigned_truncate<double, i32>(value); }; UNARY_MAP(double, fn, i32); } case Instructions::i64_trunc_sf32.value(): { auto fn = [this](auto& value) { return checked_signed_truncate<float, i64>(value); }; UNARY_MAP(float, fn, i64); } case Instructions::i64_trunc_uf32.value(): { auto fn = [this](auto& value) { return checked_unsigned_truncate<float, i64>(value); }; UNARY_MAP(float, fn, i64); } case Instructions::i64_trunc_sf64.value(): { auto fn = [this](auto& value) { return checked_signed_truncate<double, i64>(value); }; UNARY_MAP(double, fn, i64); } case Instructions::i64_trunc_uf64.value(): { auto fn = [this](auto& value) { return checked_unsigned_truncate<double, i64>(value); }; UNARY_MAP(double, fn, i64); } case Instructions::i64_extend_si32.value(): UNARY_MAP(i32, i64, i64); case Instructions::i64_extend_ui32.value(): UNARY_MAP(u32, i64, i64); case Instructions::f32_convert_si32.value(): UNARY_MAP(i32, float, float); case Instructions::f32_convert_ui32.value(): UNARY_MAP(u32, float, float); case Instructions::f32_convert_si64.value(): UNARY_MAP(i64, float, float); case Instructions::f32_convert_ui64.value(): UNARY_MAP(u32, float, float); case Instructions::f32_demote_f64.value(): UNARY_MAP(double, float, float); case Instructions::f64_convert_si32.value(): UNARY_MAP(i32, double, double); case Instructions::f64_convert_ui32.value(): UNARY_MAP(u32, double, double); case Instructions::f64_convert_si64.value(): UNARY_MAP(i64, double, double); case Instructions::f64_convert_ui64.value(): UNARY_MAP(u64, double, double); case Instructions::f64_promote_f32.value(): UNARY_MAP(float, double, double); case Instructions::i32_reinterpret_f32.value(): UNARY_MAP(float, bit_cast<i32>, i32); case Instructions::i64_reinterpret_f64.value(): UNARY_MAP(double, bit_cast<i64>, i64); case Instructions::f32_reinterpret_i32.value(): UNARY_MAP(i32, bit_cast<float>, float); case Instructions::f64_reinterpret_i64.value(): UNARY_MAP(i64, bit_cast<double>, double); case Instructions::i32_extend8_s.value(): UNARY_MAP(i32, (extend_signed<i8, i32>), i32); case Instructions::i32_extend16_s.value(): UNARY_MAP(i32, (extend_signed<i16, i32>), i32); case Instructions::i64_extend8_s.value(): UNARY_MAP(i64, (extend_signed<i8, i64>), i64); case Instructions::i64_extend16_s.value(): UNARY_MAP(i64, (extend_signed<i16, i64>), i64); case Instructions::i64_extend32_s.value(): UNARY_MAP(i64, (extend_signed<i32, i64>), i64); case Instructions::i32_trunc_sat_f32_s.value(): UNARY_MAP(float, saturating_truncate<i32>, i32); case Instructions::i32_trunc_sat_f32_u.value(): UNARY_MAP(float, saturating_truncate<u32>, i32); case Instructions::i32_trunc_sat_f64_s.value(): UNARY_MAP(double, saturating_truncate<i32>, i32); case Instructions::i32_trunc_sat_f64_u.value(): UNARY_MAP(double, saturating_truncate<u32>, i32); case Instructions::i64_trunc_sat_f32_s.value(): UNARY_MAP(float, saturating_truncate<i64>, i64); case Instructions::i64_trunc_sat_f32_u.value(): UNARY_MAP(float, saturating_truncate<u64>, i64); case Instructions::i64_trunc_sat_f64_s.value(): UNARY_MAP(double, saturating_truncate<i64>, i64); case Instructions::i64_trunc_sat_f64_u.value(): UNARY_MAP(double, saturating_truncate<u64>, i64); case Instructions::memory_init.value(): case Instructions::data_drop.value(): case Instructions::memory_copy.value(): case Instructions::memory_fill.value(): case Instructions::table_init.value(): case Instructions::elem_drop.value(): case Instructions::table_copy.value(): case Instructions::table_grow.value(): case Instructions::table_size.value(): case Instructions::table_fill.value(): default: unimplemented:; dbgln("Instruction '{}' not implemented", instruction_name(instruction.opcode())); m_trap = Trap { String::formatted("Unimplemented instruction {}", instruction_name(instruction.opcode())) }; return; } } void DebuggerBytecodeInterpreter::interpret(Configuration& configuration, InstructionPointer& ip, Instruction const& instruction) { if (pre_interpret_hook) { auto result = pre_interpret_hook(configuration, ip, instruction); if (!result) { m_trap = Trap { "Trapped by user request" }; return; } } ScopeGuard guard { [&] { if (post_interpret_hook) { auto result = post_interpret_hook(configuration, ip, instruction, *this); if (!result) { m_trap = Trap { "Trapped by user request" }; return; } } } }; BytecodeInterpreter::interpret(configuration, ip, instruction); } }