/* * Copyright (c) 2021, Andreas Kling <kling@serenityos.org> * * SPDX-License-Identifier: BSD-2-Clause */ #include <AK/Debug.h> #include <AK/HashTable.h> #include <AK/TemporaryChange.h> #include <LibJS/AST.h> #include <LibJS/Bytecode/BasicBlock.h> #include <LibJS/Bytecode/CommonImplementations.h> #include <LibJS/Bytecode/Generator.h> #include <LibJS/Bytecode/Instruction.h> #include <LibJS/Bytecode/Interpreter.h> #include <LibJS/Bytecode/Op.h> #include <LibJS/JIT/Compiler.h> #include <LibJS/Runtime/AbstractOperations.h> #include <LibJS/Runtime/Array.h> #include <LibJS/Runtime/BigInt.h> #include <LibJS/Runtime/DeclarativeEnvironment.h> #include <LibJS/Runtime/ECMAScriptFunctionObject.h> #include <LibJS/Runtime/Environment.h> #include <LibJS/Runtime/FunctionEnvironment.h> #include <LibJS/Runtime/GlobalEnvironment.h> #include <LibJS/Runtime/GlobalObject.h> #include <LibJS/Runtime/Iterator.h> #include <LibJS/Runtime/NativeFunction.h> #include <LibJS/Runtime/ObjectEnvironment.h> #include <LibJS/Runtime/Realm.h> #include <LibJS/Runtime/Reference.h> #include <LibJS/Runtime/RegExpObject.h> #include <LibJS/Runtime/Value.h> #include <LibJS/Runtime/ValueInlines.h> #include <LibJS/SourceTextModule.h> namespace JS::Bytecode { bool g_dump_bytecode = false; Interpreter::Interpreter(VM& vm) : m_vm(vm) { } Interpreter::~Interpreter() { } void Interpreter::visit_edges(Cell::Visitor& visitor) { for (auto& frame : m_call_frames) { frame.visit([&](auto& value) { value->visit_edges(visitor); }); } } // 16.1.6 ScriptEvaluation ( scriptRecord ), https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation ThrowCompletionOr<Value> Interpreter::run(Script& script_record, JS::GCPtr<Environment> lexical_environment_override) { auto& vm = this->vm(); // 1. Let globalEnv be scriptRecord.[[Realm]].[[GlobalEnv]]. auto& global_environment = script_record.realm().global_environment(); // 2. Let scriptContext be a new ECMAScript code execution context. ExecutionContext script_context(vm.heap()); // 3. Set the Function of scriptContext to null. // NOTE: This was done during execution context construction. // 4. Set the Realm of scriptContext to scriptRecord.[[Realm]]. script_context.realm = &script_record.realm(); // 5. Set the ScriptOrModule of scriptContext to scriptRecord. script_context.script_or_module = NonnullGCPtr<Script>(script_record); // 6. Set the VariableEnvironment of scriptContext to globalEnv. script_context.variable_environment = &global_environment; // 7. Set the LexicalEnvironment of scriptContext to globalEnv. script_context.lexical_environment = &global_environment; // Non-standard: Override the lexical environment if requested. if (lexical_environment_override) script_context.lexical_environment = lexical_environment_override; // 8. Set the PrivateEnvironment of scriptContext to null. // NOTE: This isn't in the spec, but we require it. script_context.is_strict_mode = script_record.parse_node().is_strict_mode(); // FIXME: 9. Suspend the currently running execution context. // 10. Push scriptContext onto the execution context stack; scriptContext is now the running execution context. TRY(vm.push_execution_context(script_context, {})); // 11. Let script be scriptRecord.[[ECMAScriptCode]]. auto& script = script_record.parse_node(); // 12. Let result be Completion(GlobalDeclarationInstantiation(script, globalEnv)). auto instantiation_result = script.global_declaration_instantiation(vm, global_environment); Completion result = instantiation_result.is_throw_completion() ? instantiation_result.throw_completion() : normal_completion({}); // 13. If result.[[Type]] is normal, then if (result.type() == Completion::Type::Normal) { auto executable_result = JS::Bytecode::Generator::generate(script); if (executable_result.is_error()) { if (auto error_string = executable_result.error().to_string(); error_string.is_error()) result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory)); else if (error_string = String::formatted("TODO({})", error_string.value()); error_string.is_error()) result = vm.template throw_completion<JS::InternalError>(vm.error_message(JS::VM::ErrorMessage::OutOfMemory)); else result = JS::throw_completion(JS::InternalError::create(realm(), error_string.release_value())); } else { auto executable = executable_result.release_value(); if (g_dump_bytecode) executable->dump(); // a. Set result to the result of evaluating script. auto result_or_error = run_and_return_frame(*executable, nullptr); if (result_or_error.value.is_error()) result = result_or_error.value.release_error(); else result = result_or_error.frame->registers[0]; } } // 14. If result.[[Type]] is normal and result.[[Value]] is empty, then if (result.type() == Completion::Type::Normal && !result.value().has_value()) { // a. Set result to NormalCompletion(undefined). result = normal_completion(js_undefined()); } // FIXME: 15. Suspend scriptContext and remove it from the execution context stack. vm.pop_execution_context(); // 16. Assert: The execution context stack is not empty. VERIFY(!vm.execution_context_stack().is_empty()); // FIXME: 17. Resume the context that is now on the top of the execution context stack as the running execution context. // At this point we may have already run any queued promise jobs via on_call_stack_emptied, // in which case this is a no-op. // FIXME: These three should be moved out of Interpreter::run and give the host an option to run these, as it's up to the host when these get run. // https://tc39.es/ecma262/#sec-jobs for jobs and https://tc39.es/ecma262/#_ref_3508 for ClearKeptObjects // finish_execution_generation is particularly an issue for LibWeb, as the HTML spec wants to run it specifically after performing a microtask checkpoint. // The promise and registry cleanup queues don't cause LibWeb an issue, as LibWeb overrides the hooks that push onto these queues. vm.run_queued_promise_jobs(); vm.run_queued_finalization_registry_cleanup_jobs(); vm.finish_execution_generation(); // 18. Return ? result. if (result.is_abrupt()) { VERIFY(result.type() == Completion::Type::Throw); return result.release_error(); } VERIFY(result.value().has_value()); return *result.value(); } ThrowCompletionOr<Value> Interpreter::run(SourceTextModule& module) { // FIXME: This is not a entry point as defined in the spec, but is convenient. // To avoid work we use link_and_eval_module however that can already be // dangerous if the vm loaded other modules. auto& vm = this->vm(); TRY(vm.link_and_eval_module(Badge<Bytecode::Interpreter> {}, module)); vm.run_queued_promise_jobs(); vm.run_queued_finalization_registry_cleanup_jobs(); return js_undefined(); } void Interpreter::run_bytecode() { auto* locals = vm().running_execution_context().local_variables.data(); auto* registers = this->registers().data(); auto& accumulator = this->accumulator(); for (;;) { start: auto pc = InstructionStreamIterator { m_current_block->instruction_stream(), m_current_executable }; TemporaryChange temp_change { m_pc, Optional<InstructionStreamIterator&>(pc) }; bool will_return = false; bool will_yield = false; ThrowCompletionOr<void> result; while (!pc.at_end()) { auto& instruction = *pc; switch (instruction.type()) { case Instruction::Type::GetLocal: { auto& local = locals[static_cast<Op::GetLocal const&>(instruction).index()]; if (local.is_empty()) { auto const& variable_name = vm().running_execution_context().function->local_variables_names()[static_cast<Op::GetLocal const&>(instruction).index()]; result = vm().throw_completion<ReferenceError>(ErrorType::BindingNotInitialized, variable_name); break; } accumulator = local; break; } case Instruction::Type::SetLocal: locals[static_cast<Op::SetLocal const&>(instruction).index()] = accumulator; break; case Instruction::Type::Load: accumulator = registers[static_cast<Op::Load const&>(instruction).src().index()]; break; case Instruction::Type::Store: registers[static_cast<Op::Store const&>(instruction).dst().index()] = accumulator; break; case Instruction::Type::LoadImmediate: accumulator = static_cast<Op::LoadImmediate const&>(instruction).value(); break; case Instruction::Type::Jump: m_current_block = &static_cast<Op::Jump const&>(instruction).true_target()->block(); goto start; case Instruction::Type::JumpConditional: if (accumulator.to_boolean()) m_current_block = &static_cast<Op::Jump const&>(instruction).true_target()->block(); else m_current_block = &static_cast<Op::Jump const&>(instruction).false_target()->block(); goto start; case Instruction::Type::JumpNullish: if (accumulator.is_nullish()) m_current_block = &static_cast<Op::Jump const&>(instruction).true_target()->block(); else m_current_block = &static_cast<Op::Jump const&>(instruction).false_target()->block(); goto start; case Instruction::Type::JumpUndefined: if (accumulator.is_undefined()) m_current_block = &static_cast<Op::Jump const&>(instruction).true_target()->block(); else m_current_block = &static_cast<Op::Jump const&>(instruction).false_target()->block(); goto start; case Instruction::Type::EnterUnwindContext: enter_unwind_context( static_cast<Op::EnterUnwindContext const&>(instruction).handler_target(), static_cast<Op::EnterUnwindContext const&>(instruction).finalizer_target()); m_current_block = &static_cast<Op::EnterUnwindContext const&>(instruction).entry_point().block(); goto start; case Instruction::Type::ContinuePendingUnwind: if (auto exception = reg(Register::exception()); !exception.is_empty()) { result = throw_completion(exception); break; } if (!saved_return_value().is_empty()) { do_return(saved_return_value()); break; } if (m_scheduled_jump) { // FIXME: If we `break` or `continue` in the finally, we need to clear // this field m_current_block = exchange(m_scheduled_jump, nullptr); } else { m_current_block = &static_cast<Op::ContinuePendingUnwind const&>(instruction).resume_target().block(); } goto start; case Instruction::Type::ScheduleJump: m_scheduled_jump = &static_cast<Op::ScheduleJump const&>(instruction).target().block(); m_current_block = unwind_contexts().last().finalizer; goto start; default: result = instruction.execute(*this); break; } if (result.is_error()) [[unlikely]] { reg(Register::exception()) = *result.throw_completion().value(); if (unwind_contexts().is_empty()) return; auto& unwind_context = unwind_contexts().last(); if (unwind_context.executable != m_current_executable) return; if (unwind_context.handler && !unwind_context.handler_called) { vm().running_execution_context().lexical_environment = unwind_context.lexical_environment; m_current_block = unwind_context.handler; unwind_context.handler_called = true; accumulator = reg(Register::exception()); reg(Register::exception()) = {}; goto start; } if (unwind_context.finalizer) { m_current_block = unwind_context.finalizer; // If an exception was thrown inside the corresponding `catch` block, we need to rethrow it // from the `finally` block. But if the exception is from the `try` block, and has already been // handled by `catch`, we swallow it. if (!unwind_context.handler_called) reg(Register::exception()) = {}; goto start; } // An unwind context with no handler or finalizer? We have nowhere to jump, and continuing on will make us crash on the next `Call` to a non-native function if there's an exception! So let's crash here instead. // If you run into this, you probably forgot to remove the current unwind_context somewhere. VERIFY_NOT_REACHED(); } if (!reg(Register::return_value()).is_empty()) { will_return = true; // Note: A `yield` statement will not go through a finally statement, // hence we need to set a flag to not do so, // but we generate a Yield Operation in the case of returns in // generators as well, so we need to check if it will actually // continue or is a `return` in disguise will_yield = (instruction.type() == Instruction::Type::Yield && static_cast<Op::Yield const&>(instruction).continuation().has_value()) || instruction.type() == Instruction::Type::Await; break; } ++pc; } if (!unwind_contexts().is_empty() && !will_yield) { auto& unwind_context = unwind_contexts().last(); if (unwind_context.executable == m_current_executable && unwind_context.finalizer) { reg(Register::saved_return_value()) = reg(Register::return_value()); reg(Register::return_value()) = {}; m_current_block = unwind_context.finalizer; // the unwind_context will be pop'ed when entering the finally block continue; } } if (pc.at_end()) break; if (will_return) break; } } Interpreter::ValueAndFrame Interpreter::run_and_return_frame(Executable& executable, BasicBlock const* entry_point, CallFrame* in_frame) { dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter will run unit {:p}", &executable); TemporaryChange restore_executable { m_current_executable, &executable }; TemporaryChange restore_saved_jump { m_scheduled_jump, static_cast<BasicBlock const*>(nullptr) }; VERIFY(!vm().execution_context_stack().is_empty()); TemporaryChange restore_current_block { m_current_block, entry_point ?: executable.basic_blocks.first() }; if (in_frame) push_call_frame(in_frame, executable.number_of_registers); else push_call_frame(make<CallFrame>(), executable.number_of_registers); if (auto native_executable = executable.get_or_create_native_executable()) { native_executable->run(vm()); #if 0 for (size_t i = 0; i < vm().running_execution_context().local_variables.size(); ++i) { dbgln("%{}: {}", i, vm().running_execution_context().local_variables[i]); } #endif } else { run_bytecode(); } dbgln_if(JS_BYTECODE_DEBUG, "Bytecode::Interpreter did run unit {:p}", &executable); if constexpr (JS_BYTECODE_DEBUG) { for (size_t i = 0; i < registers().size(); ++i) { String value_string; if (registers()[i].is_empty()) value_string = "(empty)"_string; else value_string = registers()[i].to_string_without_side_effects(); dbgln("[{:3}] {}", i, value_string); } } auto return_value = js_undefined(); if (!reg(Register::return_value()).is_empty()) return_value = reg(Register::return_value()); else if (!reg(Register::saved_return_value()).is_empty()) return_value = reg(Register::saved_return_value()); auto exception = reg(Register::exception()); auto frame = pop_call_frame(); // NOTE: The return value from a called function is put into $0 in the caller context. if (!m_call_frames.is_empty()) call_frame().registers[0] = return_value; // At this point we may have already run any queued promise jobs via on_call_stack_emptied, // in which case this is a no-op. vm().run_queued_promise_jobs(); vm().finish_execution_generation(); if (!exception.is_empty()) { if (auto* call_frame = frame.get_pointer<NonnullOwnPtr<CallFrame>>()) return { throw_completion(exception), move(*call_frame) }; return { throw_completion(exception), nullptr }; } if (auto* call_frame = frame.get_pointer<NonnullOwnPtr<CallFrame>>()) return { return_value, move(*call_frame) }; return { return_value, nullptr }; } void Interpreter::enter_unwind_context(Optional<Label> handler_target, Optional<Label> finalizer_target) { unwind_contexts().empend( m_current_executable, handler_target.has_value() ? &handler_target->block() : nullptr, finalizer_target.has_value() ? &finalizer_target->block() : nullptr, vm().running_execution_context().lexical_environment); } void Interpreter::leave_unwind_context() { unwind_contexts().take_last(); } ThrowCompletionOr<NonnullRefPtr<Bytecode::Executable>> compile(VM& vm, ASTNode const& node, FunctionKind kind, DeprecatedFlyString const& name) { auto executable_result = Bytecode::Generator::generate(node, kind); if (executable_result.is_error()) return vm.throw_completion<InternalError>(ErrorType::NotImplemented, TRY_OR_THROW_OOM(vm, executable_result.error().to_string())); auto bytecode_executable = executable_result.release_value(); bytecode_executable->name = name; if (Bytecode::g_dump_bytecode) bytecode_executable->dump(); return bytecode_executable; } Realm& Interpreter::realm() { return *m_vm.current_realm(); } void Interpreter::push_call_frame(Variant<NonnullOwnPtr<CallFrame>, CallFrame*> frame, size_t register_count) { m_call_frames.append(move(frame)); this->call_frame().registers.resize(register_count); m_current_call_frame = this->call_frame().registers; reg(Register::return_value()) = {}; } Variant<NonnullOwnPtr<CallFrame>, CallFrame*> Interpreter::pop_call_frame() { auto frame = m_call_frames.take_last(); m_current_call_frame = m_call_frames.is_empty() ? Span<Value> {} : this->call_frame().registers; return frame; } } namespace JS::Bytecode { DeprecatedString Instruction::to_deprecated_string(Bytecode::Executable const& executable) const { #define __BYTECODE_OP(op) \ case Instruction::Type::op: \ return static_cast<Bytecode::Op::op const&>(*this).to_deprecated_string_impl(executable); switch (type()) { ENUMERATE_BYTECODE_OPS(__BYTECODE_OP) default: VERIFY_NOT_REACHED(); } #undef __BYTECODE_OP } } namespace JS::Bytecode::Op { ThrowCompletionOr<void> Load::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> LoadImmediate::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> Store::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } static ThrowCompletionOr<Value> abstract_inequals(VM& vm, Value src1, Value src2) { return Value(!TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr<Value> abstract_equals(VM& vm, Value src1, Value src2) { return Value(TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr<Value> typed_inequals(VM&, Value src1, Value src2) { return Value(!is_strictly_equal(src1, src2)); } static ThrowCompletionOr<Value> typed_equals(VM&, Value src1, Value src2) { return Value(is_strictly_equal(src1, src2)); } #define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ auto lhs = interpreter.reg(m_lhs_reg); \ auto rhs = interpreter.accumulator(); \ interpreter.accumulator() = TRY(op_snake_case(vm, lhs, rhs)); \ return {}; \ } \ DeprecatedString OpTitleCase::to_deprecated_string_impl(Bytecode::Executable const&) const \ { \ return DeprecatedString::formatted(#OpTitleCase " {}", m_lhs_reg); \ } JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP) static ThrowCompletionOr<Value> not_(VM&, Value value) { return Value(!value.to_boolean()); } static ThrowCompletionOr<Value> typeof_(VM& vm, Value value) { return PrimitiveString::create(vm, value.typeof()); } #define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \ ThrowCompletionOr<void> OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ interpreter.accumulator() = TRY(op_snake_case(vm, interpreter.accumulator())); \ return {}; \ } \ DeprecatedString OpTitleCase::to_deprecated_string_impl(Bytecode::Executable const&) const \ { \ return #OpTitleCase; \ } JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP) ThrowCompletionOr<void> NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.accumulator() = BigInt::create(vm, m_bigint); return {}; } ThrowCompletionOr<void> NewArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto array = MUST(Array::create(interpreter.realm(), 0)); for (size_t i = 0; i < m_element_count; i++) { auto& value = interpreter.reg(Register(m_elements[0].index() + i)); array->indexed_properties().put(i, value, default_attributes); } interpreter.accumulator() = array; return {}; } ThrowCompletionOr<void> Append::execute_impl(Bytecode::Interpreter& interpreter) const { // Note: This OpCode is used to construct array literals and argument arrays for calls, // containing at least one spread element, // Iterating over such a spread element to unpack it has to be visible by // the user courtesy of // (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation // SpreadElement : ... AssignmentExpression // 1. Let spreadRef be ? Evaluation of AssignmentExpression. // 2. Let spreadObj be ? GetValue(spreadRef). // 3. Let iteratorRecord be ? GetIterator(spreadObj). // 4. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return nextIndex. // c. Let nextValue be ? IteratorValue(next). // d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue). // e. Set nextIndex to nextIndex + 1. // (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation // ArgumentList : ... AssignmentExpression // 1. Let list be a new empty List. // 2. Let spreadRef be ? Evaluation of AssignmentExpression. // 3. Let spreadObj be ? GetValue(spreadRef). // 4. Let iteratorRecord be ? GetIterator(spreadObj). // 5. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return list. // c. Let nextArg be ? IteratorValue(next). // d. Append nextArg to list. // ArgumentList : ArgumentList , ... AssignmentExpression // 1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList. // 2. Let spreadRef be ? Evaluation of AssignmentExpression. // 3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)). // 4. Repeat, // a. Let next be ? IteratorStep(iteratorRecord). // b. If next is false, return precedingArgs. // c. Let nextArg be ? IteratorValue(next). // d. Append nextArg to precedingArgs. auto& vm = interpreter.vm(); // Note: We know from codegen, that lhs is a plain array with only indexed properties auto& lhs = interpreter.reg(m_lhs).as_array(); auto lhs_size = lhs.indexed_properties().array_like_size(); auto rhs = interpreter.accumulator(); if (m_is_spread) { // ...rhs size_t i = lhs_size; TRY(get_iterator_values(vm, rhs, [&i, &lhs](Value iterator_value) -> Optional<Completion> { lhs.indexed_properties().put(i, iterator_value, default_attributes); ++i; return {}; })); } else { lhs.indexed_properties().put(lhs_size, rhs, default_attributes); } return {}; } ThrowCompletionOr<void> ImportCall::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto specifier = interpreter.reg(m_specifier); auto options_value = interpreter.reg(m_options); interpreter.accumulator() = TRY(perform_import_call(vm, specifier, options_value)); return {}; } // FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great. // Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd. static Object* iterator_to_object(VM& vm, IteratorRecord iterator) { auto& realm = *vm.current_realm(); auto object = Object::create(realm, nullptr); object->define_direct_property(vm.names.iterator, iterator.iterator, 0); object->define_direct_property(vm.names.next, iterator.next_method, 0); object->define_direct_property(vm.names.done, Value(iterator.done), 0); return object; } static IteratorRecord object_to_iterator(VM& vm, Object& object) { return IteratorRecord { .iterator = &MUST(object.get(vm.names.iterator)).as_object(), .next_method = MUST(object.get(vm.names.next)), .done = MUST(object.get(vm.names.done)).as_bool() }; } ThrowCompletionOr<void> IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, iterator_object); auto array = MUST(Array::create(interpreter.realm(), 0)); size_t index = 0; while (true) { auto iterator_result = TRY(iterator_next(vm, iterator)); auto complete = TRY(iterator_complete(vm, iterator_result)); if (complete) { interpreter.accumulator() = array; return {}; } auto value = TRY(iterator_value(vm, iterator_result)); MUST(array->create_data_property_or_throw(index, value)); index++; } return {}; } ThrowCompletionOr<void> NewString::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = PrimitiveString::create(interpreter.vm(), interpreter.current_executable().get_string(m_string)); return {}; } ThrowCompletionOr<void> NewObject::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& realm = *vm.current_realm(); interpreter.accumulator() = Object::create(realm, realm.intrinsics().object_prototype()); return {}; } // 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation ThrowCompletionOr<void> NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& realm = *vm.current_realm(); // 1. Let pattern be CodePointsToString(BodyText of RegularExpressionLiteral). auto pattern = interpreter.current_executable().get_string(m_source_index); // 2. Let flags be CodePointsToString(FlagText of RegularExpressionLiteral). auto flags = interpreter.current_executable().get_string(m_flags_index); // 3. Return ! RegExpCreate(pattern, flags). auto& parsed_regex = interpreter.current_executable().regex_table->get(m_regex_index); Regex<ECMA262> regex(parsed_regex.regex, parsed_regex.pattern, parsed_regex.flags); // NOTE: We bypass RegExpCreate and subsequently RegExpAlloc as an optimization to use the already parsed values. auto regexp_object = RegExpObject::create(realm, move(regex), move(pattern), move(flags)); // RegExpAlloc has these two steps from the 'Legacy RegExp features' proposal. regexp_object->set_realm(*vm.current_realm()); // We don't need to check 'If SameValue(newTarget, thisRealm.[[Intrinsics]].[[%RegExp%]]) is true' // here as we know RegExpCreate calls RegExpAlloc with %RegExp% for newTarget. regexp_object->set_legacy_features_enabled(true); interpreter.accumulator() = regexp_object; return {}; } #define JS_DEFINE_NEW_BUILTIN_ERROR_OP(ErrorName) \ ThrowCompletionOr<void> New##ErrorName::execute_impl(Bytecode::Interpreter& interpreter) const \ { \ auto& vm = interpreter.vm(); \ auto& realm = *vm.current_realm(); \ interpreter.accumulator() = ErrorName::create(realm, interpreter.current_executable().get_string(m_error_string)); \ return {}; \ } \ DeprecatedString New##ErrorName::to_deprecated_string_impl(Bytecode::Executable const& executable) const \ { \ return DeprecatedString::formatted("New" #ErrorName " {} (\"{}\")", m_error_string, executable.string_table->get(m_error_string)); \ } JS_ENUMERATE_NEW_BUILTIN_ERROR_OPS(JS_DEFINE_NEW_BUILTIN_ERROR_OP) ThrowCompletionOr<void> CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& realm = *vm.current_realm(); auto from_object = interpreter.reg(m_from_object); auto to_object = Object::create(realm, realm.intrinsics().object_prototype()); HashTable<PropertyKey> excluded_names; for (size_t i = 0; i < m_excluded_names_count; ++i) { excluded_names.set(TRY(interpreter.reg(m_excluded_names[i]).to_property_key(vm))); } TRY(to_object->copy_data_properties(vm, from_object, excluded_names)); interpreter.accumulator() = to_object; return {}; } ThrowCompletionOr<void> ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto string = TRY(interpreter.accumulator().to_primitive_string(vm)); interpreter.reg(m_lhs) = PrimitiveString::create(vm, interpreter.reg(m_lhs).as_string(), string); return {}; } ThrowCompletionOr<void> GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& cached_environment_coordinate = interpreter.current_executable().environment_variable_caches[m_cache_index]; if (cached_environment_coordinate.has_value()) { auto environment = vm.running_execution_context().lexical_environment; for (size_t i = 0; i < cached_environment_coordinate->hops; ++i) environment = environment->outer_environment(); VERIFY(environment); VERIFY(environment->is_declarative_environment()); if (!environment->is_permanently_screwed_by_eval()) { interpreter.accumulator() = TRY(verify_cast<DeclarativeEnvironment>(*environment).get_binding_value_direct(vm, cached_environment_coordinate.value().index, vm.in_strict_mode())); return {}; } cached_environment_coordinate = {}; } auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); if (reference.environment_coordinate().has_value()) cached_environment_coordinate = reference.environment_coordinate(); interpreter.accumulator() = TRY(reference.get_value(vm)); return {}; } ThrowCompletionOr<void> GetCalleeAndThisFromEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& cached_environment_coordinate = interpreter.current_executable().environment_variable_caches[m_cache_index]; if (cached_environment_coordinate.has_value()) { auto environment = vm.running_execution_context().lexical_environment; for (size_t i = 0; i < cached_environment_coordinate->hops; ++i) environment = environment->outer_environment(); VERIFY(environment); VERIFY(environment->is_declarative_environment()); if (!environment->is_permanently_screwed_by_eval()) { interpreter.reg(m_callee_reg) = TRY(verify_cast<DeclarativeEnvironment>(*environment).get_binding_value_direct(vm, cached_environment_coordinate.value().index, vm.in_strict_mode())); Value this_value = js_undefined(); if (auto base_object = environment->with_base_object()) this_value = base_object; interpreter.reg(m_this_reg) = this_value; return {}; } cached_environment_coordinate = {}; } auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); if (reference.environment_coordinate().has_value()) cached_environment_coordinate = reference.environment_coordinate(); interpreter.reg(m_callee_reg) = TRY(reference.get_value(vm)); Value this_value = js_undefined(); if (reference.is_property_reference()) { this_value = reference.get_this_value(); } else { if (reference.is_environment_reference()) { if (auto base_object = reference.base_environment().with_base_object(); base_object != nullptr) this_value = base_object; } } interpreter.reg(m_this_reg) = this_value; return {}; } ThrowCompletionOr<void> GetGlobal::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = TRY(get_global(interpreter, m_identifier, m_cache_index)); return {}; } ThrowCompletionOr<void> GetLocal::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> DeleteVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& string = interpreter.current_executable().get_identifier(m_identifier); auto reference = TRY(vm.resolve_binding(string)); interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr<void> CreateLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto make_and_swap_envs = [&](auto& old_environment) { GCPtr<Environment> environment = new_declarative_environment(*old_environment).ptr(); swap(old_environment, environment); return environment; }; interpreter.saved_lexical_environment_stack().append(make_and_swap_envs(interpreter.vm().running_execution_context().lexical_environment)); return {}; } ThrowCompletionOr<void> EnterObjectEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto& old_environment = vm.running_execution_context().lexical_environment; interpreter.saved_lexical_environment_stack().append(old_environment); auto object = TRY(interpreter.accumulator().to_object(vm)); vm.running_execution_context().lexical_environment = new_object_environment(object, true, old_environment); return {}; } ThrowCompletionOr<void> CreateVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_identifier); if (m_mode == EnvironmentMode::Lexical) { VERIFY(!m_is_global); // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us. // Instead of crashing in there, we'll just raise an exception here. if (TRY(vm.lexical_environment()->has_binding(name))) return vm.throw_completion<InternalError>(TRY_OR_THROW_OOM(vm, String::formatted("Lexical environment already has binding '{}'", name))); if (m_is_immutable) return vm.lexical_environment()->create_immutable_binding(vm, name, m_is_strict); else return vm.lexical_environment()->create_mutable_binding(vm, name, m_is_strict); } else { if (!m_is_global) { if (m_is_immutable) return vm.variable_environment()->create_immutable_binding(vm, name, m_is_strict); else return vm.variable_environment()->create_mutable_binding(vm, name, m_is_strict); } else { // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted". // The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode. return verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false); } } return {}; } ThrowCompletionOr<void> SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_identifier); TRY(set_variable(vm, name, interpreter.accumulator(), m_mode, m_initialization_mode)); return {}; } ThrowCompletionOr<void> SetLocal::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> GetById::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.accumulator(); interpreter.accumulator() = TRY(get_by_id(interpreter, m_property, base_value, base_value, m_cache_index)); return {}; } ThrowCompletionOr<void> GetByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto base_value = interpreter.accumulator(); auto this_value = interpreter.reg(m_this_value); interpreter.accumulator() = TRY(get_by_id(interpreter, m_property, base_value, this_value, m_cache_index)); return {}; } ThrowCompletionOr<void> GetPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& name = interpreter.current_executable().get_identifier(m_property); auto base_value = interpreter.accumulator(); auto private_reference = make_private_reference(vm, base_value, name); interpreter.accumulator() = TRY(private_reference.get_value(vm)); return {}; } ThrowCompletionOr<void> HasPrivateId::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); if (!interpreter.accumulator().is_object()) return vm.throw_completion<TypeError>(ErrorType::InOperatorWithObject); auto private_environment = vm.running_execution_context().private_environment; VERIFY(private_environment); auto private_name = private_environment->resolve_private_identifier(interpreter.current_executable().get_identifier(m_property)); interpreter.accumulator() = Value(interpreter.accumulator().as_object().private_element_find(private_name) != nullptr); return {}; } ThrowCompletionOr<void> PutById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the value from the accumulator before side effects have a chance to overwrite it. auto value = interpreter.accumulator(); auto base = interpreter.reg(m_base); PropertyKey name = interpreter.current_executable().get_identifier(m_property); TRY(put_by_property_key(vm, base, base, value, name, m_kind)); interpreter.accumulator() = value; return {}; } ThrowCompletionOr<void> PutByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the value from the accumulator before side effects have a chance to overwrite it. auto value = interpreter.accumulator(); auto base = interpreter.reg(m_base); PropertyKey name = interpreter.current_executable().get_identifier(m_property); TRY(put_by_property_key(vm, base, interpreter.reg(m_this_value), value, name, m_kind)); interpreter.accumulator() = value; return {}; } ThrowCompletionOr<void> PutPrivateById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the value from the accumulator before side effects have a chance to overwrite it. auto value = interpreter.accumulator(); auto object = TRY(interpreter.reg(m_base).to_object(vm)); auto name = interpreter.current_executable().get_identifier(m_property); auto private_reference = make_private_reference(vm, object, name); TRY(private_reference.put_value(vm, value)); interpreter.accumulator() = value; return {}; } ThrowCompletionOr<void> DeleteById::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto base_value = interpreter.accumulator(); auto const& identifier = interpreter.current_executable().get_identifier(m_property); bool strict = vm.in_strict_mode(); auto reference = Reference { base_value, identifier, {}, strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr<void> DeleteByIdWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto base_value = interpreter.accumulator(); auto const& identifier = interpreter.current_executable().get_identifier(m_property); bool strict = vm.in_strict_mode(); auto reference = Reference { base_value, identifier, interpreter.reg(m_this_value), strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr<void> Jump::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const { auto& cached_this_value = interpreter.reg(Register::this_value()); if (cached_this_value.is_empty()) { // OPTIMIZATION: Because the value of 'this' cannot be reassigned during a function execution, it's // resolved once and then saved for subsequent use. auto& vm = interpreter.vm(); cached_this_value = TRY(vm.resolve_this_binding()); } interpreter.accumulator() = cached_this_value; return {}; } // https://tc39.es/ecma262/#sec-makesuperpropertyreference ThrowCompletionOr<void> ResolveSuperBase::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // 1. Let env be GetThisEnvironment(). auto& env = verify_cast<FunctionEnvironment>(*get_this_environment(vm)); // 2. Assert: env.HasSuperBinding() is true. VERIFY(env.has_super_binding()); // 3. Let baseValue be ? env.GetSuperBase(). interpreter.accumulator() = TRY(env.get_super_base()); return {}; } ThrowCompletionOr<void> GetNewTarget::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = interpreter.vm().get_new_target(); return {}; } ThrowCompletionOr<void> GetImportMeta::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = interpreter.vm().get_import_meta(); return {}; } ThrowCompletionOr<void> JumpConditional::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> JumpNullish::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> JumpUndefined::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation static MarkedVector<Value> argument_list_evaluation(Bytecode::Interpreter& interpreter) { // Note: Any spreading and actual evaluation is handled in preceding opcodes // Note: The spec uses the concept of a list, while we create a temporary array // in the preceding opcodes, so we have to convert in a manner that is not // visible to the user auto& vm = interpreter.vm(); MarkedVector<Value> argument_values { vm.heap() }; auto arguments = interpreter.accumulator(); auto& argument_array = arguments.as_array(); auto array_length = argument_array.indexed_properties().array_like_size(); argument_values.ensure_capacity(array_length); for (size_t i = 0; i < array_length; ++i) { if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value()) argument_values.append(maybe_value.release_value().value); else argument_values.append(js_undefined()); } return argument_values; } ThrowCompletionOr<void> Call::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto callee = interpreter.reg(m_callee); TRY(throw_if_needed_for_call(interpreter, *this, callee)); MarkedVector<Value> argument_values(vm.heap()); argument_values.ensure_capacity(m_argument_count); for (u32 i = 0; i < m_argument_count; ++i) { argument_values.unchecked_append(interpreter.reg(Register { m_first_argument.index() + i })); } interpreter.accumulator() = TRY(perform_call(interpreter, interpreter.reg(m_this_value), call_type(), callee, move(argument_values))); return {}; } ThrowCompletionOr<void> CallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto callee = interpreter.reg(m_callee); TRY(throw_if_needed_for_call(interpreter, *this, callee)); auto argument_values = argument_list_evaluation(interpreter); interpreter.accumulator() = TRY(perform_call(interpreter, interpreter.reg(m_this_value), call_type(), callee, move(argument_values))); return {}; } // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation ThrowCompletionOr<void> SuperCallWithArgumentArray::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // 1. Let newTarget be GetNewTarget(). auto new_target = vm.get_new_target(); // 2. Assert: Type(newTarget) is Object. VERIFY(new_target.is_object()); // 3. Let func be GetSuperConstructor(). auto* func = get_super_constructor(vm); // 4. Let argList be ? ArgumentListEvaluation of Arguments. MarkedVector<Value> arg_list { vm.heap() }; if (m_is_synthetic) { auto const& value = interpreter.accumulator(); VERIFY(value.is_object() && is<Array>(value.as_object())); auto const& array_value = static_cast<Array const&>(value.as_object()); auto length = MUST(length_of_array_like(vm, array_value)); for (size_t i = 0; i < length; ++i) arg_list.append(array_value.get_without_side_effects(PropertyKey { i })); } else { arg_list = argument_list_evaluation(interpreter); } // 5. If IsConstructor(func) is false, throw a TypeError exception. if (!Value(func).is_constructor()) return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor"); // 6. Let result be ? Construct(func, argList, newTarget). auto result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function())); // 7. Let thisER be GetThisEnvironment(). auto& this_environment = verify_cast<FunctionEnvironment>(*get_this_environment(vm)); // 8. Perform ? thisER.BindThisValue(result). TRY(this_environment.bind_this_value(vm, result)); // 9. Let F be thisER.[[FunctionObject]]. auto& f = this_environment.function_object(); // 10. Assert: F is an ECMAScript function object. // NOTE: This is implied by the strong C++ type. // 11. Perform ? InitializeInstanceElements(result, F). TRY(result->initialize_instance_elements(f)); // 12. Return result. interpreter.accumulator() = result; return {}; } ThrowCompletionOr<void> NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.accumulator() = new_function(vm, m_function_node, m_lhs_name, m_home_object); return {}; } ThrowCompletionOr<void> Return::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.do_return(interpreter.accumulator().value_or(js_undefined())); return {}; } ThrowCompletionOr<void> Increment::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = TRY(interpreter.accumulator().to_numeric(vm)); if (old_value.is_number()) interpreter.accumulator() = Value(old_value.as_double() + 1); else interpreter.accumulator() = BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); return {}; } ThrowCompletionOr<void> Decrement::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_value = TRY(interpreter.accumulator().to_numeric(vm)); if (old_value.is_number()) interpreter.accumulator() = Value(old_value.as_double() - 1); else interpreter.accumulator() = BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); return {}; } ThrowCompletionOr<void> Throw::execute_impl(Bytecode::Interpreter& interpreter) const { return throw_completion(interpreter.accumulator()); } ThrowCompletionOr<void> ThrowIfNotObject::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); if (!interpreter.accumulator().is_object()) return vm.throw_completion<TypeError>(ErrorType::NotAnObject, interpreter.accumulator().to_string_without_side_effects()); return {}; } ThrowCompletionOr<void> ThrowIfNullish::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.accumulator(); if (value.is_nullish()) return vm.throw_completion<TypeError>(ErrorType::NotObjectCoercible, value.to_string_without_side_effects()); return {}; } ThrowCompletionOr<void> EnterUnwindContext::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> ScheduleJump::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> LeaveLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.vm().running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last(); return {}; } ThrowCompletionOr<void> LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.leave_unwind_context(); return {}; } ThrowCompletionOr<void> ContinuePendingUnwind::execute_impl(Bytecode::Interpreter&) const { // Handled in the interpreter loop. __builtin_unreachable(); } ThrowCompletionOr<void> PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const { auto environment = interpreter.vm().heap().allocate_without_realm<DeclarativeEnvironment>(interpreter.vm().lexical_environment()); interpreter.vm().running_execution_context().lexical_environment = environment; interpreter.vm().running_execution_context().variable_environment = environment; return {}; } ThrowCompletionOr<void> Yield::execute_impl(Bytecode::Interpreter& interpreter) const { auto yielded_value = interpreter.accumulator().value_or(js_undefined()); auto object = Object::create(interpreter.realm(), nullptr); object->define_direct_property("result", yielded_value, JS::default_attributes); if (m_continuation_label.has_value()) // FIXME: If we get a pointer, which is not accurately representable as a double // will cause this to explode object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes); else object->define_direct_property("continuation", Value(0), JS::default_attributes); object->define_direct_property("isAwait", Value(false), JS::default_attributes); interpreter.do_return(object); return {}; } ThrowCompletionOr<void> Await::execute_impl(Bytecode::Interpreter& interpreter) const { auto yielded_value = interpreter.accumulator().value_or(js_undefined()); auto object = Object::create(interpreter.realm(), nullptr); object->define_direct_property("result", yielded_value, JS::default_attributes); // FIXME: If we get a pointer, which is not accurately representable as a double // will cause this to explode object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label.block()))), JS::default_attributes); object->define_direct_property("isAwait", Value(true), JS::default_attributes); interpreter.do_return(object); return {}; } ThrowCompletionOr<void> GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = TRY(get_by_value(interpreter, interpreter.reg(m_base), interpreter.accumulator())); return {}; } ThrowCompletionOr<void> GetByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the property key from the accumulator before side effects have a chance to overwrite it. auto property_key_value = interpreter.accumulator(); auto object = TRY(interpreter.reg(m_base).to_object(vm)); auto property_key = TRY(property_key_value.to_property_key(vm)); interpreter.accumulator() = TRY(object->internal_get(property_key, interpreter.reg(m_this_value))); return {}; } ThrowCompletionOr<void> PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto value = interpreter.accumulator(); TRY(put_by_value(vm, interpreter.reg(m_base), interpreter.reg(m_property), interpreter.accumulator(), m_kind)); interpreter.accumulator() = value; return {}; } ThrowCompletionOr<void> PutByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the value from the accumulator before side effects have a chance to overwrite it. auto value = interpreter.accumulator(); auto base = interpreter.reg(m_base); auto property_key = m_kind != PropertyKind::Spread ? TRY(interpreter.reg(m_property).to_property_key(vm)) : PropertyKey {}; TRY(put_by_property_key(vm, base, interpreter.reg(m_this_value), value, property_key, m_kind)); interpreter.accumulator() = value; return {}; } ThrowCompletionOr<void> DeleteByValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the property key from the accumulator before side effects have a chance to overwrite it. auto property_key_value = interpreter.accumulator(); auto base_value = interpreter.reg(m_base); auto property_key = TRY(property_key_value.to_property_key(vm)); bool strict = vm.in_strict_mode(); auto reference = Reference { base_value, property_key, {}, strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr<void> DeleteByValueWithThis::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); // NOTE: Get the property key from the accumulator before side effects have a chance to overwrite it. auto property_key_value = interpreter.accumulator(); auto base_value = interpreter.reg(m_base); auto property_key = TRY(property_key_value.to_property_key(vm)); bool strict = vm.in_strict_mode(); auto reference = Reference { base_value, property_key, interpreter.reg(m_this_value), strict }; interpreter.accumulator() = Value(TRY(reference.delete_(vm))); return {}; } ThrowCompletionOr<void> GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator = TRY(get_iterator(vm, interpreter.accumulator(), m_hint)); interpreter.accumulator() = iterator_to_object(vm, iterator); return {}; } ThrowCompletionOr<void> GetMethod::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto identifier = interpreter.current_executable().get_identifier(m_property); auto method = TRY(interpreter.accumulator().get_method(vm, identifier)); interpreter.accumulator() = method ?: js_undefined(); return {}; } // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties ThrowCompletionOr<void> GetObjectPropertyIterator::execute_impl(Bytecode::Interpreter& interpreter) const { // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants: // 1- Returned property keys do not include keys that are Symbols // 2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored // 3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration // 4- A property name will be returned by the iterator's next method at most once in any enumeration. // 5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; // but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method. // 6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed. // 7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument. // 8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method. // 9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations). auto& vm = interpreter.vm(); auto object = TRY(interpreter.accumulator().to_object(vm)); // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys, // so we just keep the order consistent anyway. OrderedHashTable<PropertyKey> properties; OrderedHashTable<PropertyKey> non_enumerable_properties; HashTable<NonnullGCPtr<Object>> seen_objects; // Collect all keys immediately (invariant no. 5) for (auto object_to_check = GCPtr { object.ptr() }; object_to_check && !seen_objects.contains(*object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) { seen_objects.set(*object_to_check); for (auto& key : TRY(object_to_check->internal_own_property_keys())) { if (key.is_symbol()) continue; auto property_key = TRY(PropertyKey::from_value(vm, key)); // If there is a non-enumerable property higher up the prototype chain with the same key, // we mustn't include this property even if it's enumerable (invariant no. 5 and 6) if (non_enumerable_properties.contains(property_key)) continue; if (properties.contains(property_key)) continue; auto descriptor = TRY(object_to_check->internal_get_own_property(property_key)); if (!*descriptor->enumerable) non_enumerable_properties.set(move(property_key)); else properties.set(move(property_key)); } } IteratorRecord iterator { .iterator = object, .next_method = NativeFunction::create( interpreter.realm(), [items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> { auto& realm = *vm.current_realm(); auto iterated_object_value = vm.this_value(); if (!iterated_object_value.is_object()) return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next"sv); auto& iterated_object = iterated_object_value.as_object(); auto result_object = Object::create(realm, nullptr); while (true) { if (items.is_empty()) { result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes); return result_object; } auto key = items.take_first(); // If the property is deleted, don't include it (invariant no. 2) if (!TRY(iterated_object.has_property(key))) continue; result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes); if (key.is_number()) result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, TRY_OR_THROW_OOM(vm, String::number(key.as_number()))), default_attributes); else if (key.is_string()) result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, key.as_string()), default_attributes); else VERIFY_NOT_REACHED(); // We should not have non-string/number keys. return result_object; } }, 1, vm.names.next), .done = false, }; interpreter.accumulator() = iterator_to_object(vm, move(iterator)); return {}; } ThrowCompletionOr<void> IteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, iterator_object); // FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!) TRY(iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value, {} })); return {}; } ThrowCompletionOr<void> AsyncIteratorClose::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, iterator_object); // FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!) TRY(async_iterator_close(vm, iterator, Completion { m_completion_type, m_completion_value, {} })); return {}; } ThrowCompletionOr<void> IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_object = TRY(interpreter.accumulator().to_object(vm)); auto iterator = object_to_iterator(vm, iterator_object); interpreter.accumulator() = TRY(iterator_next(vm, iterator)); return {}; } ThrowCompletionOr<void> IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_result = TRY(interpreter.accumulator().to_object(vm)); auto complete = TRY(iterator_complete(vm, iterator_result)); interpreter.accumulator() = Value(complete); return {}; } ThrowCompletionOr<void> IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto iterator_result = TRY(interpreter.accumulator().to_object(vm)); interpreter.accumulator() = TRY(iterator_value(vm, iterator_result)); return {}; } ThrowCompletionOr<void> NewClass::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto name = m_class_expression.name(); auto super_class = interpreter.accumulator(); // NOTE: NewClass expects classEnv to be active lexical environment auto class_environment = vm.lexical_environment(); vm.running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last(); DeprecatedFlyString binding_name; DeprecatedFlyString class_name; if (!m_class_expression.has_name() && m_lhs_name.has_value()) { class_name = interpreter.current_executable().get_identifier(m_lhs_name.value()); } else { binding_name = name; class_name = name.is_null() ? ""sv : name; } interpreter.accumulator() = TRY(m_class_expression.create_class_constructor(vm, class_environment, vm.lexical_environment(), super_class, binding_name, class_name)); return {}; } // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation ThrowCompletionOr<void> TypeofVariable::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); interpreter.accumulator() = TRY(typeof_variable(vm, interpreter.current_executable().get_identifier(m_identifier))); return {}; } ThrowCompletionOr<void> TypeofLocal::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto const& value = vm.running_execution_context().local_variables[m_index]; interpreter.accumulator() = PrimitiveString::create(vm, value.typeof()); return {}; } ThrowCompletionOr<void> ToNumeric::execute_impl(Bytecode::Interpreter& interpreter) const { interpreter.accumulator() = TRY(interpreter.accumulator().to_numeric(interpreter.vm())); return {}; } ThrowCompletionOr<void> BlockDeclarationInstantiation::execute_impl(Bytecode::Interpreter& interpreter) const { auto& vm = interpreter.vm(); auto old_environment = vm.running_execution_context().lexical_environment; interpreter.saved_lexical_environment_stack().append(old_environment); vm.running_execution_context().lexical_environment = new_declarative_environment(*old_environment); m_scope_node.block_declaration_instantiation(vm, vm.running_execution_context().lexical_environment); return {}; } DeprecatedString Load::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("Load {}", m_src); } DeprecatedString LoadImmediate::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("LoadImmediate {}", m_value); } DeprecatedString Store::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("Store {}", m_dst); } DeprecatedString NewBigInt::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("NewBigInt \"{}\"", m_bigint.to_base_deprecated(10)); } DeprecatedString NewArray::to_deprecated_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.append("NewArray"sv); if (m_element_count != 0) { builder.appendff(" [{}-{}]", m_elements[0], m_elements[1]); } return builder.to_deprecated_string(); } DeprecatedString Append::to_deprecated_string_impl(Bytecode::Executable const&) const { if (m_is_spread) return DeprecatedString::formatted("Append lhs: **{}", m_lhs); return DeprecatedString::formatted("Append lhs: {}", m_lhs); } DeprecatedString IteratorToArray::to_deprecated_string_impl(Bytecode::Executable const&) const { return "IteratorToArray"; } DeprecatedString NewString::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string)); } DeprecatedString NewObject::to_deprecated_string_impl(Bytecode::Executable const&) const { return "NewObject"; } DeprecatedString NewRegExp::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index)); } DeprecatedString CopyObjectExcludingProperties::to_deprecated_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object); if (m_excluded_names_count != 0) { builder.append(" excluding:["sv); builder.join(", "sv, ReadonlySpan<Register>(m_excluded_names, m_excluded_names_count)); builder.append(']'); } return builder.to_deprecated_string(); } DeprecatedString ConcatString::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("ConcatString {}", m_lhs); } DeprecatedString GetCalleeAndThisFromEnvironment::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetCalleeAndThisFromEnvironment {} -> callee: {}, this:{} ", executable.identifier_table->get(m_identifier), m_callee_reg, m_this_reg); } DeprecatedString GetVariable::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString GetGlobal::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetGlobal {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString GetLocal::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("GetLocal {}", m_index); } DeprecatedString DeleteVariable::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("DeleteVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString CreateLexicalEnvironment::to_deprecated_string_impl(Bytecode::Executable const&) const { return "CreateLexicalEnvironment"sv; } DeprecatedString CreateVariable::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return DeprecatedString::formatted("CreateVariable env:{} immutable:{} global:{} {} ({})", mode_string, m_is_immutable, m_is_global, m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString EnterObjectEnvironment::to_deprecated_string_impl(Executable const&) const { return DeprecatedString::formatted("EnterObjectEnvironment"); } DeprecatedString SetVariable::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto initialization_mode_name = m_initialization_mode == InitializationMode::Initialize ? "Initialize" : "Set"; auto mode_string = m_mode == EnvironmentMode::Lexical ? "Lexical" : "Variable"; return DeprecatedString::formatted("SetVariable env:{} init:{} {} ({})", mode_string, initialization_mode_name, m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString SetLocal::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("SetLocal {}", m_index); } static StringView property_kind_to_string(PropertyKind kind) { switch (kind) { case PropertyKind::Getter: return "getter"sv; case PropertyKind::Setter: return "setter"sv; case PropertyKind::KeyValue: return "key-value"sv; case PropertyKind::DirectKeyValue: return "direct-key-value"sv; case PropertyKind::Spread: return "spread"sv; case PropertyKind::ProtoSetter: return "proto-setter"sv; } VERIFY_NOT_REACHED(); } DeprecatedString PutById::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return DeprecatedString::formatted("PutById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property)); } DeprecatedString PutByIdWithThis::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return DeprecatedString::formatted("PutByIdWithThis kind:{} base:{}, property:{} ({}) this_value:{}", kind, m_base, m_property, executable.identifier_table->get(m_property), m_this_value); } DeprecatedString PutPrivateById::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto kind = property_kind_to_string(m_kind); return DeprecatedString::formatted("PutPrivateById kind:{} base:{}, property:{} ({})", kind, m_base, m_property, executable.identifier_table->get(m_property)); } DeprecatedString GetById::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property)); } DeprecatedString GetByIdWithThis::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetByIdWithThis {} ({}) this_value:{}", m_property, executable.identifier_table->get(m_property), m_this_value); } DeprecatedString GetPrivateById::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetPrivateById {} ({})", m_property, executable.identifier_table->get(m_property)); } DeprecatedString HasPrivateId::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("HasPrivateId {} ({})", m_property, executable.identifier_table->get(m_property)); } DeprecatedString DeleteById::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("DeleteById {} ({})", m_property, executable.identifier_table->get(m_property)); } DeprecatedString DeleteByIdWithThis::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("DeleteByIdWithThis {} ({}) this_value:{}", m_property, executable.identifier_table->get(m_property), m_this_value); } DeprecatedString Jump::to_deprecated_string_impl(Bytecode::Executable const&) const { if (m_true_target.has_value()) return DeprecatedString::formatted("Jump {}", *m_true_target); return DeprecatedString::formatted("Jump <empty>"); } DeprecatedString JumpConditional::to_deprecated_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? DeprecatedString::formatted("{}", *m_true_target) : "<empty>"; auto false_string = m_false_target.has_value() ? DeprecatedString::formatted("{}", *m_false_target) : "<empty>"; return DeprecatedString::formatted("JumpConditional true:{} false:{}", true_string, false_string); } DeprecatedString JumpNullish::to_deprecated_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? DeprecatedString::formatted("{}", *m_true_target) : "<empty>"; auto false_string = m_false_target.has_value() ? DeprecatedString::formatted("{}", *m_false_target) : "<empty>"; return DeprecatedString::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string); } DeprecatedString JumpUndefined::to_deprecated_string_impl(Bytecode::Executable const&) const { auto true_string = m_true_target.has_value() ? DeprecatedString::formatted("{}", *m_true_target) : "<empty>"; auto false_string = m_false_target.has_value() ? DeprecatedString::formatted("{}", *m_false_target) : "<empty>"; return DeprecatedString::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string); } static StringView call_type_to_string(CallType type) { switch (type) { case CallType::Call: return ""sv; case CallType::Construct: return " (Construct)"sv; case CallType::DirectEval: return " (DirectEval)"sv; } VERIFY_NOT_REACHED(); } DeprecatedString Call::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto type = call_type_to_string(m_type); if (m_expression_string.has_value()) return DeprecatedString::formatted("Call{} callee:{}, this:{}, first_arg:{} ({})", type, m_callee, m_this_value, m_first_argument, executable.get_string(m_expression_string.value())); return DeprecatedString::formatted("Call{} callee:{}, this:{}, first_arg:{}", type, m_callee, m_first_argument, m_this_value); } DeprecatedString CallWithArgumentArray::to_deprecated_string_impl(Bytecode::Executable const& executable) const { auto type = call_type_to_string(m_type); if (m_expression_string.has_value()) return DeprecatedString::formatted("CallWithArgumentArray{} callee:{}, this:{}, arguments:[...acc] ({})", type, m_callee, m_this_value, executable.get_string(m_expression_string.value())); return DeprecatedString::formatted("CallWithArgumentArray{} callee:{}, this:{}, arguments:[...acc]", type, m_callee, m_this_value); } DeprecatedString SuperCallWithArgumentArray::to_deprecated_string_impl(Bytecode::Executable const&) const { return "SuperCallWithArgumentArray arguments:[...acc]"sv; } DeprecatedString NewFunction::to_deprecated_string_impl(Bytecode::Executable const&) const { StringBuilder builder; builder.append("NewFunction"sv); if (m_function_node.has_name()) builder.appendff(" name:{}"sv, m_function_node.name()); if (m_lhs_name.has_value()) builder.appendff(" lhs_name:{}"sv, m_lhs_name.value()); if (m_home_object.has_value()) builder.appendff(" home_object:{}"sv, m_home_object.value()); return builder.to_deprecated_string(); } DeprecatedString NewClass::to_deprecated_string_impl(Bytecode::Executable const&) const { StringBuilder builder; auto name = m_class_expression.name(); builder.appendff("NewClass '{}'"sv, name.is_null() ? ""sv : name); if (m_lhs_name.has_value()) builder.appendff(" lhs_name:{}"sv, m_lhs_name.value()); return builder.to_deprecated_string(); } DeprecatedString Return::to_deprecated_string_impl(Bytecode::Executable const&) const { return "Return"; } DeprecatedString Increment::to_deprecated_string_impl(Bytecode::Executable const&) const { return "Increment"; } DeprecatedString Decrement::to_deprecated_string_impl(Bytecode::Executable const&) const { return "Decrement"; } DeprecatedString Throw::to_deprecated_string_impl(Bytecode::Executable const&) const { return "Throw"; } DeprecatedString ThrowIfNotObject::to_deprecated_string_impl(Bytecode::Executable const&) const { return "ThrowIfNotObject"; } DeprecatedString ThrowIfNullish::to_deprecated_string_impl(Bytecode::Executable const&) const { return "ThrowIfNullish"; } DeprecatedString EnterUnwindContext::to_deprecated_string_impl(Bytecode::Executable const&) const { auto handler_string = m_handler_target.has_value() ? DeprecatedString::formatted("{}", *m_handler_target) : "<empty>"; auto finalizer_string = m_finalizer_target.has_value() ? DeprecatedString::formatted("{}", *m_finalizer_target) : "<empty>"; return DeprecatedString::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point); } DeprecatedString ScheduleJump::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("ScheduleJump {}", m_target); } DeprecatedString LeaveLexicalEnvironment::to_deprecated_string_impl(Bytecode::Executable const&) const { return "LeaveLexicalEnvironment"sv; } DeprecatedString LeaveUnwindContext::to_deprecated_string_impl(Bytecode::Executable const&) const { return "LeaveUnwindContext"; } DeprecatedString ContinuePendingUnwind::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("ContinuePendingUnwind resume:{}", m_resume_target); } DeprecatedString PushDeclarativeEnvironment::to_deprecated_string_impl(Bytecode::Executable const& executable) const { StringBuilder builder; builder.append("PushDeclarativeEnvironment"sv); if (!m_variables.is_empty()) { builder.append(" {"sv); Vector<DeprecatedString> names; for (auto& it : m_variables) names.append(executable.get_string(it.key)); builder.append('}'); builder.join(", "sv, names); } return builder.to_deprecated_string(); } DeprecatedString Yield::to_deprecated_string_impl(Bytecode::Executable const&) const { if (m_continuation_label.has_value()) return DeprecatedString::formatted("Yield continuation:@{}", m_continuation_label->block().name()); return DeprecatedString::formatted("Yield return"); } DeprecatedString Await::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("Await continuation:@{}", m_continuation_label.block().name()); } DeprecatedString GetByValue::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("GetByValue base:{}", m_base); } DeprecatedString GetByValueWithThis::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("GetByValueWithThis base:{} this_value:{}", m_base, m_this_value); } DeprecatedString PutByValue::to_deprecated_string_impl(Bytecode::Executable const&) const { auto kind = property_kind_to_string(m_kind); return DeprecatedString::formatted("PutByValue kind:{} base:{}, property:{}", kind, m_base, m_property); } DeprecatedString PutByValueWithThis::to_deprecated_string_impl(Bytecode::Executable const&) const { auto kind = property_kind_to_string(m_kind); return DeprecatedString::formatted("PutByValueWithThis kind:{} base:{}, property:{} this_value:{}", kind, m_base, m_property, m_this_value); } DeprecatedString DeleteByValue::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("DeleteByValue base:{}", m_base); } DeprecatedString DeleteByValueWithThis::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("DeleteByValueWithThis base:{} this_value:{}", m_base, m_this_value); } DeprecatedString GetIterator::to_deprecated_string_impl(Executable const&) const { auto hint = m_hint == IteratorHint::Sync ? "sync" : "async"; return DeprecatedString::formatted("GetIterator hint:{}", hint); } DeprecatedString GetMethod::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("GetMethod {} ({})", m_property, executable.identifier_table->get(m_property)); } DeprecatedString GetObjectPropertyIterator::to_deprecated_string_impl(Bytecode::Executable const&) const { return "GetObjectPropertyIterator"; } DeprecatedString IteratorClose::to_deprecated_string_impl(Bytecode::Executable const&) const { if (!m_completion_value.has_value()) return DeprecatedString::formatted("IteratorClose completion_type={} completion_value=<empty>", to_underlying(m_completion_type)); auto completion_value_string = m_completion_value->to_string_without_side_effects(); return DeprecatedString::formatted("IteratorClose completion_type={} completion_value={}", to_underlying(m_completion_type), completion_value_string); } DeprecatedString AsyncIteratorClose::to_deprecated_string_impl(Bytecode::Executable const&) const { if (!m_completion_value.has_value()) return DeprecatedString::formatted("AsyncIteratorClose completion_type={} completion_value=<empty>", to_underlying(m_completion_type)); auto completion_value_string = m_completion_value->to_string_without_side_effects(); return DeprecatedString::formatted("AsyncIteratorClose completion_type={} completion_value={}", to_underlying(m_completion_type), completion_value_string); } DeprecatedString IteratorNext::to_deprecated_string_impl(Executable const&) const { return "IteratorNext"; } DeprecatedString IteratorResultDone::to_deprecated_string_impl(Executable const&) const { return "IteratorResultDone"; } DeprecatedString IteratorResultValue::to_deprecated_string_impl(Executable const&) const { return "IteratorResultValue"; } DeprecatedString ResolveThisBinding::to_deprecated_string_impl(Bytecode::Executable const&) const { return "ResolveThisBinding"sv; } DeprecatedString ResolveSuperBase::to_deprecated_string_impl(Bytecode::Executable const&) const { return "ResolveSuperBase"sv; } DeprecatedString GetNewTarget::to_deprecated_string_impl(Bytecode::Executable const&) const { return "GetNewTarget"sv; } DeprecatedString GetImportMeta::to_deprecated_string_impl(Bytecode::Executable const&) const { return "GetImportMeta"sv; } DeprecatedString TypeofVariable::to_deprecated_string_impl(Bytecode::Executable const& executable) const { return DeprecatedString::formatted("TypeofVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier)); } DeprecatedString TypeofLocal::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("TypeofLocal {}", m_index); } DeprecatedString ToNumeric::to_deprecated_string_impl(Bytecode::Executable const&) const { return "ToNumeric"sv; } DeprecatedString BlockDeclarationInstantiation::to_deprecated_string_impl(Bytecode::Executable const&) const { return "BlockDeclarationInstantiation"sv; } DeprecatedString ImportCall::to_deprecated_string_impl(Bytecode::Executable const&) const { return DeprecatedString::formatted("ImportCall specifier:{} options:{}"sv, m_specifier, m_options); } }