/* * Copyright (c) 2020, Ali Mohammad Pur * Copyright (c) 2020-2021, Dex♪ * * SPDX-License-Identifier: BSD-2-Clause */ #include "UnsignedBigIntegerAlgorithms.h" namespace Crypto { void UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation( UnsignedBigInteger& ep, UnsignedBigInteger& base, UnsignedBigInteger const& m, UnsignedBigInteger& temp_1, UnsignedBigInteger& temp_2, UnsignedBigInteger& temp_3, UnsignedBigInteger& temp_4, UnsignedBigInteger& temp_multiply, UnsignedBigInteger& temp_quotient, UnsignedBigInteger& temp_remainder, UnsignedBigInteger& exp) { exp.set_to(1); while (!(ep < 1)) { if (ep.words()[0] % 2 == 1) { // exp = (exp * base) % m; multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_multiply); divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder); exp.set_to(temp_remainder); } // ep = ep / 2; divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder); ep.set_to(temp_quotient); // base = (base * base) % m; multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_multiply); divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder); base.set_to(temp_remainder); // Note that not clamping here would cause future calculations (multiply, specifically) to allocate even more unused space // which would then persist through the temp bigints, and significantly slow down later loops. // To avoid that, we can clamp to a specific max size, or just clamp to the min needed amount of space. ep.clamp_to_trimmed_length(); exp.clamp_to_trimmed_length(); base.clamp_to_trimmed_length(); } } /** * Compute (1/value) % 2^32. * This needs an odd input value * Algorithm from: Dumas, J.G. "On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers". */ ALWAYS_INLINE static u32 inverse_wrapped(u32 value) { VERIFY(value & 1); u64 b = static_cast(value); u64 k0 = (2 - b); u64 t = (b - 1); size_t i = 1; while (i < 32) { t = t * t; k0 = k0 * (t + 1); i <<= 1; } return static_cast(-k0); } /** * Computes z = x * y + c. z_carry contains the top bits, z contains the bottom bits. */ ALWAYS_INLINE static void linear_multiplication_with_carry(u32 x, u32 y, u32 c, u32& z_carry, u32& z) { u64 result = static_cast(x) * static_cast(y) + static_cast(c); z_carry = static_cast(result >> 32); z = static_cast(result); } /** * Computes z = a + b. z_carry contains the top bit (1 or 0), z contains the bottom bits. */ ALWAYS_INLINE static void addition_with_carry(u32 a, u32 b, u32& z_carry, u32& z) { u64 result = static_cast(a) + static_cast(b); z_carry = static_cast(result >> 32); z = static_cast(result); } /** * Computes a montgomery "fragment" for y_i. This computes "z[i] += x[i] * y_i" for all words while rippling the carry, and returns the carry. * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf) */ UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::montgomery_fragment(UnsignedBigInteger& z, size_t offset_in_z, UnsignedBigInteger const& x, UnsignedBigInteger::Word y_digit, size_t num_words) { UnsignedBigInteger::Word carry { 0 }; for (size_t i = 0; i < num_words; ++i) { UnsignedBigInteger::Word a_carry; UnsignedBigInteger::Word a; linear_multiplication_with_carry(x.m_words[i], y_digit, z.m_words[offset_in_z + i], a_carry, a); UnsignedBigInteger::Word b_carry; UnsignedBigInteger::Word b; addition_with_carry(a, carry, b_carry, b); z.m_words[offset_in_z + i] = b; carry = a_carry + b_carry; } return carry; } /** * Computes the "almost montgomery" product : x * y * 2 ^ (-num_words * BITS_IN_WORD) % modulo * [Note : that means that the result z satisfies z * 2^(num_words * BITS_IN_WORD) % modulo = x * y % modulo] * assuming : * - x, y and modulo are all already padded to num_words * - k = inverse_wrapped(modulo) (optimization to not recompute K each time) * Algorithm from: Gueron, "Efficient Software Implementations of Modular Exponentiation". (https://eprint.iacr.org/2011/239.pdf) */ void UnsignedBigIntegerAlgorithms::almost_montgomery_multiplication_without_allocation( UnsignedBigInteger const& x, UnsignedBigInteger const& y, UnsignedBigInteger const& modulo, UnsignedBigInteger& z, UnsignedBigInteger::Word k, size_t num_words, UnsignedBigInteger& result) { VERIFY(x.length() >= num_words); VERIFY(y.length() >= num_words); VERIFY(modulo.length() >= num_words); z.set_to(0); z.resize_with_leading_zeros(num_words * 2); UnsignedBigInteger::Word previous_double_carry { 0 }; for (size_t i = 0; i < num_words; ++i) { // z[i->num_words+i] += x * y_i UnsignedBigInteger::Word carry_1 = montgomery_fragment(z, i, x, y.m_words[i], num_words); // z[i->num_words+i] += modulo * (z_i * k) UnsignedBigInteger::Word t = z.m_words[i] * k; UnsignedBigInteger::Word carry_2 = montgomery_fragment(z, i, modulo, t, num_words); // Compute the carry by combining all of the carries of the previous computations // Put it "right after" the range that we computed above UnsignedBigInteger::Word temp_carry = previous_double_carry + carry_1; UnsignedBigInteger::Word overall_carry = temp_carry + carry_2; z.m_words[num_words + i] = overall_carry; // Detect if there was a "double carry" for this word by checking if our carry results are smaller than their components previous_double_carry = (temp_carry < carry_1 || overall_carry < carry_2) ? 1 : 0; } if (previous_double_carry == 0) { // Return the top num_words bytes of Z, which contains our result. shift_right_by_n_words(z, num_words, result); result.resize_with_leading_zeros(num_words); return; } // We have a carry, so we're "one bigger" than we need to be. // Subtract the modulo from the result (the top half of z), and write it to the bottom half of Z since we have space. // (With carry, of course.) UnsignedBigInteger::Word c { 0 }; for (size_t i = 0; i < num_words; ++i) { UnsignedBigInteger::Word z_digit = z.m_words[num_words + i]; UnsignedBigInteger::Word modulo_digit = modulo.m_words[i]; UnsignedBigInteger::Word new_z_digit = z_digit - modulo_digit - c; z.m_words[i] = new_z_digit; // Detect if the subtraction underflowed - from "Hacker's Delight" c = ((modulo_digit & ~z_digit) | ((modulo_digit | ~z_digit) & new_z_digit)) >> (UnsignedBigInteger::BITS_IN_WORD - 1); } // Return the bottom num_words bytes of Z (with the carry bit handled) z.m_words.resize(num_words); result.set_to(z); result.resize_with_leading_zeros(num_words); } /** * Complexity: still O(N^3) with N the number of words in the largest word, but less complex than the classical mod power. * Note: the montgomery multiplications requires an inverse modulo over 2^32, which is only defined for odd numbers. */ void UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations( UnsignedBigInteger const& base, UnsignedBigInteger const& exponent, UnsignedBigInteger const& modulo, UnsignedBigInteger& temp_z, UnsignedBigInteger& rr, UnsignedBigInteger& one, UnsignedBigInteger& z, UnsignedBigInteger& zz, UnsignedBigInteger& x, UnsignedBigInteger& temp_extra, UnsignedBigInteger& result) { VERIFY(modulo.is_odd()); // Note: While this is a constexpr variable for clarity and could be changed in theory, // various optimized parts of the algorithm rely on this value being exactly 4. constexpr size_t window_size = 4; size_t num_words = modulo.trimmed_length(); UnsignedBigInteger::Word k = inverse_wrapped(modulo.m_words[0]); one.set_to(1); // rr = ( 2 ^ (2 * modulo.length() * BITS_IN_WORD) ) % modulo shift_left_by_n_words(one, 2 * num_words, x); divide_without_allocation(x, modulo, temp_z, one, z, zz, temp_extra, rr); rr.resize_with_leading_zeros(num_words); // x = base [% modulo, if x doesn't already fit in modulo's words] x.set_to(base); if (x.trimmed_length() > num_words) divide_without_allocation(base, modulo, temp_z, one, z, zz, temp_extra, x); x.resize_with_leading_zeros(num_words); one.set_to(1); one.resize_with_leading_zeros(num_words); // Compute the montgomery powers from 0 to 2^window_size. powers[i] = x^i UnsignedBigInteger powers[1 << window_size]; almost_montgomery_multiplication_without_allocation(one, rr, modulo, temp_z, k, num_words, powers[0]); almost_montgomery_multiplication_without_allocation(x, rr, modulo, temp_z, k, num_words, powers[1]); for (size_t i = 2; i < (1 << window_size); ++i) almost_montgomery_multiplication_without_allocation(powers[i - 1], powers[1], modulo, temp_z, k, num_words, powers[i]); z.set_to(powers[0]); z.resize_with_leading_zeros(num_words); zz.set_to(0); zz.resize_with_leading_zeros(num_words); ssize_t exponent_length = exponent.trimmed_length(); for (ssize_t word_in_exponent = exponent_length - 1; word_in_exponent >= 0; --word_in_exponent) { UnsignedBigInteger::Word exponent_word = exponent.m_words[word_in_exponent]; size_t bit_in_word = 0; while (bit_in_word < UnsignedBigInteger::BITS_IN_WORD) { if (word_in_exponent != exponent_length - 1 || bit_in_word != 0) { almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz); almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z); almost_montgomery_multiplication_without_allocation(z, z, modulo, temp_z, k, num_words, zz); almost_montgomery_multiplication_without_allocation(zz, zz, modulo, temp_z, k, num_words, z); } auto power_index = exponent_word >> (UnsignedBigInteger::BITS_IN_WORD - window_size); auto& power = powers[power_index]; almost_montgomery_multiplication_without_allocation(z, power, modulo, temp_z, k, num_words, zz); swap(z, zz); // Move to the next window exponent_word <<= window_size; bit_in_word += window_size; } } almost_montgomery_multiplication_without_allocation(z, one, modulo, temp_z, k, num_words, zz); if (zz < modulo) { result.set_to(zz); result.clamp_to_trimmed_length(); return; } // Note : Since we were using "almost montgomery" multiplications, we aren't guaranteed to be under the modulo already. // So, if we're here, we need to respect the modulo. // We can, however, start by trying to subtract the modulo, just in case we're close. subtract_without_allocation(zz, modulo, result); if (modulo < zz) { // Note: This branch shouldn't happen in theory (as noted in https://github.com/rust-num/num-bigint/blob/master/src/biguint/monty.rs#L210) // Let's dbgln the values we used. That way, if we hit this branch, we can contribute these values for test cases. dbgln("Encountered the modulo branch during a montgomery modular power. Params : {} - {} - {}", base, exponent, modulo); // We just clobber all the other temporaries that we don't need for the division. // This is wasteful, but we're on the edgiest of cases already. divide_without_allocation(zz, modulo, temp_z, rr, z, x, temp_extra, result); } result.clamp_to_trimmed_length(); return; } }