/* * Copyright (c) 2022, stelar7 * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace Crypto::Curves { // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5 ErrorOr Ed25519::generate_private_key() { // The private key is 32 octets (256 bits, corresponding to b) of // cryptographically secure random data. See [RFC4086] for a discussion // about randomness. auto buffer = TRY(ByteBuffer::create_uninitialized(key_size())); fill_with_random(buffer); return buffer; }; // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5 ErrorOr Ed25519::generate_public_key(ReadonlyBytes private_key) { // The 32-byte public key is generated by the following steps. // 1. Hash the 32-byte private key using SHA-512, storing the digest in a 64-octet large buffer, denoted h. // Only the lower 32 bytes are used for generating the public key. auto digest = Crypto::Hash::SHA512::hash(private_key); // NOTE: we do these steps in the opposite order (since its easier to modify s) // 3. Interpret the buffer as the little-endian integer, forming a secret scalar s. memcpy(s, digest.data, 32); // 2. Prune the buffer: // The lowest three bits of the first octet are cleared, s[0] &= 0xF8; // the highest bit of the last octet is cleared, s[31] &= 0x7F; // and the second highest bit of the last octet is set. s[31] |= 0x40; // Perform a fixed-base scalar multiplication [s]B. point_multiply_scalar(&sb, s, &BASE_POINT); // 4. The public key A is the encoding of the point [s]B. // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets. // The most significant bit of the final octet is always zero. // To form the encoding of the point [s]B, copy the least significant bit of the x coordinate // to the most significant bit of the final octet. The result is the public key. auto public_key = TRY(ByteBuffer::create_uninitialized(key_size())); encode_point(&sb, public_key.data()); return public_key; } // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6 ErrorOr Ed25519::sign(ReadonlyBytes public_key, ReadonlyBytes private_key, ReadonlyBytes message) { // 1. Hash the private key, 32 octets, using SHA-512. // Let h denote the resulting digest. auto h = Crypto::Hash::SHA512::hash(private_key); // Construct the secret scalar s from the first half of the digest, memcpy(s, h.data, 32); // NOTE: This is done later in step 4, but we can also do it here. s[0] &= 0xF8; s[31] &= 0x7F; s[31] |= 0x40; // and the corresponding public key A, as described in the previous section. // NOTE: The public key A is taken as input to this function. // Let prefix denote the second half of the hash digest, h[32],...,h[63]. memcpy(p, h.data + 32, 32); // 2. Compute SHA-512(dom2(F, C) || p || PH(M)), where M is the message to be signed. Crypto::Hash::SHA512 hash; // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519 hash.update(p, 32); // NOTE: PH(M) = M hash.update(message.data(), message.size()); // Interpret the 64-octet digest as a little-endian integer r. // For efficiency, do this by first reducing r modulo L, the group order of B. auto digest = hash.digest(); barrett_reduce(r, digest.data); // 3. Compute the point [r]B. point_multiply_scalar(&rb, r, &BASE_POINT); auto R = TRY(ByteBuffer::create_uninitialized(32)); // Let the string R be the encoding of this point encode_point(&rb, R.data()); // 4. Compute SHA512(dom2(F, C) || R || A || PH(M)), // NOTE: We can reuse hash here, since digest() calls reset() // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519 hash.update(R.data(), R.size()); // NOTE: A == public_key hash.update(public_key.data(), public_key.size()); // NOTE: PH(M) = M hash.update(message.data(), message.size()); digest = hash.digest(); // and interpret the 64-octet digest as a little-endian integer k. memcpy(k, digest.data, 64); // 5. Compute S = (r + k * s) mod L. For efficiency, again reduce k modulo L first. barrett_reduce(p, k); multiply(k, k + 32, p, s, 32); barrett_reduce(p, k); add(s, p, r, 32); // modular reduction auto reduced_s = TRY(ByteBuffer::create_uninitialized(32)); auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, 32); select(reduced_s.data(), p, s, is_negative, 32); // 6. Form the signature of the concatenation of R (32 octets) and the little-endian encoding of S // (32 octets; the three most significant bits of the final octet are always zero). auto signature = TRY(ByteBuffer::copy(R)); signature.append(reduced_s); return signature; } // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7 bool Ed25519::verify(ReadonlyBytes public_key, ReadonlyBytes signature, ReadonlyBytes message) { auto not_valid = false; // 1. To verify a signature on a message M using public key A, // with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or Ed25519ph is being used, C being the context // first split the signature into two 32-octet halves. // If any of the decodings fail (including S being out of range), the signature is invalid. // NOTE: We dont care about F, since we dont implement Ed25519ctx or Ed25519PH // NOTE: C is the internal state, so its not a parameter auto half_signature_size = signature_size() / 2; // Decode the first half as a point R memcpy(r, signature.data(), half_signature_size); // and the second half as an integer S, in the range 0 <= s < L. memcpy(s, signature.data() + half_signature_size, half_signature_size); // NOTE: Ed25519 and Ed448 signatures are not malleable due to the verification check that decoded S is smaller than l. // Without this check, one can add a multiple of l into a scalar part and still pass signature verification, // resulting in malleable signatures. auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, half_signature_size); not_valid |= 1 ^ is_negative; // Decode the public key A as point A'. not_valid |= decode_point(&ka, public_key.data()); // 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the 64-octet digest as a little-endian integer k. Crypto::Hash::SHA512 hash; // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519 hash.update(r, half_signature_size); // NOTE: A == public_key hash.update(public_key.data(), key_size()); // NOTE: PH(M) = M hash.update(message.data(), message.size()); auto digest = hash.digest(); auto k = digest.data; // 3. Check the group equation [8][S]B = [8]R + [8][k]A'. // It's sufficient, but not required, to instead check [S]B = R + [k]A'. // NOTE: For efficiency, do this by first reducing k modulo L. barrett_reduce(k, k); // NOTE: We check [S]B - [k]A' == R Curve25519::modular_subtract(ka.x, Curve25519::ZERO, ka.x); Curve25519::modular_subtract(ka.t, Curve25519::ZERO, ka.t); point_multiply_scalar(&sb, s, &BASE_POINT); point_multiply_scalar(&ka, k, &ka); point_add(&ka, &sb, &ka); encode_point(&ka, p); not_valid |= compare(p, r, half_signature_size); return !not_valid; } void Ed25519::point_double(Ed25519Point* result, Ed25519Point const* point) { Curve25519::modular_square(a, point->x); Curve25519::modular_square(b, point->y); Curve25519::modular_square(c, point->z); Curve25519::modular_add(c, c, c); Curve25519::modular_add(e, a, b); Curve25519::modular_add(f, point->x, point->y); Curve25519::modular_square(f, f); Curve25519::modular_subtract(f, e, f); Curve25519::modular_subtract(g, a, b); Curve25519::modular_add(h, c, g); Curve25519::modular_multiply(result->x, f, h); Curve25519::modular_multiply(result->y, e, g); Curve25519::modular_multiply(result->z, g, h); Curve25519::modular_multiply(result->t, e, f); } void Ed25519::point_multiply_scalar(Ed25519Point* result, u8 const* scalar, Ed25519Point const* point) { // Set U to the neutral element (0, 1, 1, 0) Curve25519::set(u.x, 0); Curve25519::set(u.y, 1); Curve25519::set(u.z, 1); Curve25519::set(u.t, 0); for (i32 i = Curve25519::BITS - 1; i >= 0; i--) { u8 b = (scalar[i / 8] >> (i % 8)) & 1; // Compute U = 2 * U point_double(&u, &u); // Compute V = U + P point_add(&v, &u, point); // If b is set, then U = V Curve25519::select(u.x, u.x, v.x, b); Curve25519::select(u.y, u.y, v.y, b); Curve25519::select(u.z, u.z, v.z, b); Curve25519::select(u.t, u.t, v.t, b); } Curve25519::copy(result->x, u.x); Curve25519::copy(result->y, u.y); Curve25519::copy(result->z, u.z); Curve25519::copy(result->t, u.t); } // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2 void Ed25519::encode_point(Ed25519Point* point, u8* data) { // Retrieve affine representation Curve25519::modular_multiply_inverse(point->z, point->z); Curve25519::modular_multiply(point->x, point->x, point->z); Curve25519::modular_multiply(point->y, point->y, point->z); Curve25519::set(point->z, 1); Curve25519::modular_multiply(point->t, point->x, point->y); // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets. // The most significant bit of the final octet is always zero. Curve25519::export_state(point->y, data); // To form the encoding of the point [s]B, // copy the least significant bit of the x coordinate to the most significant bit of the final octet. data[31] |= (point->x[0] & 1) << 7; } void Ed25519::barrett_reduce(u8* result, u8 const* input) { // Barrett reduction b = 2^8 && k = 32 u8 is_negative; u8 u[33]; u8 v[33]; multiply(NULL, u, input + 31, Curve25519::BARRETT_REDUCTION_QUOTIENT, 33); multiply(v, NULL, u, Curve25519::BASE_POINT_L_ORDER, 33); subtract(u, input, v, 33); is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33); select(u, v, u, is_negative, 33); is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33); select(u, v, u, is_negative, 33); copy(result, u, 32); } void Ed25519::multiply(u8* result_low, u8* result_high, u8 const* a, u8 const* b, u8 n) { // Comba's algorithm u32 temp = 0; for (u32 i = 0; i < n; i++) { for (u32 j = 0; j <= i; j++) { temp += (uint16_t)a[j] * b[i - j]; } if (result_low != NULL) { result_low[i] = temp & 0xFF; } temp >>= 8; } if (result_high != NULL) { for (u32 i = n; i < (2 * n); i++) { for (u32 j = i + 1 - n; j < n; j++) { temp += (uint16_t)a[j] * b[i - j]; } result_high[i - n] = temp & 0xFF; temp >>= 8; } } } void Ed25519::add(u8* result, u8 const* a, u8 const* b, u8 n) { // Compute R = A + B u16 temp = 0; for (u8 i = 0; i < n; i++) { temp += a[i]; temp += b[i]; result[i] = temp & 0xFF; temp >>= 8; } } u8 Ed25519::subtract(u8* result, u8 const* a, u8 const* b, u8 n) { i16 temp = 0; // Compute R = A - B for (i8 i = 0; i < n; i++) { temp += a[i]; temp -= b[i]; result[i] = temp & 0xFF; temp >>= 8; } // Return 1 if the result of the subtraction is negative return temp & 1; } void Ed25519::select(u8* r, u8 const* a, u8 const* b, u8 c, u8 n) { u8 mask = c - 1; for (u8 i = 0; i < n; i++) { r[i] = (a[i] & mask) | (b[i] & ~mask); } } // https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3 u32 Ed25519::decode_point(Ed25519Point* point, u8 const* data) { u32 u[8]; u32 v[8]; u32 ret; u64 temp = 19; // 1. First, interpret the string as an integer in little-endian representation. // Bit 255 of this number is the least significant bit of the x-coordinate and denote this value x_0. u8 x0 = data[31] >> 7; // The y-coordinate is recovered simply by clearing this bit. Curve25519::import_state(point->y, data); point->y[7] &= 0x7FFFFFFF; // Compute U = Y + 19 for (u32 i = 0; i < 8; i++) { temp += point->y[i]; u[i] = temp & 0xFFFFFFFF; temp >>= 32; } // If the resulting value is >= p, decoding fails. ret = (u[7] >> 31) & 1; // 2. To recover the x-coordinate, the curve equation implies x^2 = (y^2 - 1) / (d y^2 + 1) (mod p). // The denominator is always non-zero mod p. // Let u = y^2 - 1 and v = d * y^2 + 1 Curve25519::modular_square(v, point->y); Curve25519::modular_subtract_single(u, v, 1); Curve25519::modular_multiply(v, v, Curve25519::CURVE_D); Curve25519::modular_add_single(v, v, 1); // 3. Compute u = sqrt(u / v) ret |= Curve25519::modular_square_root(u, u, v); // If x = 0, and x_0 = 1, decoding fails. ret |= (Curve25519::compare(u, Curve25519::ZERO) ^ 1) & x0; // 4. Finally, use the x_0 bit to select the right square root. Curve25519::modular_subtract(v, Curve25519::ZERO, u); Curve25519::select(point->x, u, v, (x0 ^ u[0]) & 1); Curve25519::set(point->z, 1); Curve25519::modular_multiply(point->t, point->x, point->y); // Return 0 if the point has been successfully decoded, else 1 return ret; } void Ed25519::point_add(Ed25519Point* result, Ed25519Point const* p, Ed25519Point const* q) { // Compute R = P + Q Curve25519::modular_add(c, p->y, p->x); Curve25519::modular_add(d, q->y, q->x); Curve25519::modular_multiply(a, c, d); Curve25519::modular_subtract(c, p->y, p->x); Curve25519::modular_subtract(d, q->y, q->x); Curve25519::modular_multiply(b, c, d); Curve25519::modular_multiply(c, p->z, q->z); Curve25519::modular_add(c, c, c); Curve25519::modular_multiply(d, p->t, q->t); Curve25519::modular_multiply(d, d, Curve25519::CURVE_D_2); Curve25519::modular_add(e, a, b); Curve25519::modular_subtract(f, a, b); Curve25519::modular_add(g, c, d); Curve25519::modular_subtract(h, c, d); Curve25519::modular_multiply(result->x, f, h); Curve25519::modular_multiply(result->y, e, g); Curve25519::modular_multiply(result->z, g, h); Curve25519::modular_multiply(result->t, e, f); } u8 Ed25519::compare(u8 const* a, u8 const* b, u8 n) { u8 mask = 0; for (u32 i = 0; i < n; i++) { mask |= a[i] ^ b[i]; } // Return 0 if A = B, else 1 return ((u8)(mask | (~mask + 1))) >> 7; } void Ed25519::copy(u8* a, u8 const* b, u32 n) { for (u32 i = 0; i < n; i++) { a[i] = b[i]; } } }