/* * Copyright (c) 2021-2022, Matthew Olsson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include namespace PDF { RefPtr ICCBasedColorSpace::s_srgb_profile; #define ENUMERATE(name, may_be_specified_directly) \ ColorSpaceFamily ColorSpaceFamily::name { #name, may_be_specified_directly }; ENUMERATE_COLOR_SPACE_FAMILIES(ENUMERATE); #undef ENUMERATE PDFErrorOr ColorSpaceFamily::get(DeprecatedFlyString const& family_name) { #define ENUMERATE(f_name, may_be_specified_directly) \ if (family_name == f_name.name()) { \ return ColorSpaceFamily::f_name; \ } ENUMERATE_COLOR_SPACE_FAMILIES(ENUMERATE) #undef ENUMERATE dbgln_if(PDF_DEBUG, "Unknown ColorSpace family: {}", family_name); return Error(Error::Type::MalformedPDF, "Unknown ColorSpace family"_string); } PDFErrorOr> ColorSpace::create(Document* document, NonnullRefPtr color_space_object) { // "A color space is defined by an array object whose first element is a name object identifying the color space family. // The remaining array elements, if any, are parameters that further characterize the color space; // their number and types vary according to the particular family. // For families that do not require parameters, the color space can be specified simply by the family name itself instead of an array." if (color_space_object->is()) return ColorSpace::create(color_space_object->cast()->name()); if (color_space_object->is()) return ColorSpace::create(document, color_space_object->cast()); return Error { Error::Type::MalformedPDF, "Color space must be name or array" }; } PDFErrorOr> ColorSpace::create(DeprecatedFlyString const& name) { // Simple color spaces with no parameters, which can be specified directly if (name == CommonNames::DeviceGray) return DeviceGrayColorSpace::the(); if (name == CommonNames::DeviceRGB) return DeviceRGBColorSpace::the(); if (name == CommonNames::DeviceCMYK) return DeviceCMYKColorSpace::the(); if (name == CommonNames::Pattern) return Error::rendering_unsupported_error("Pattern color spaces not yet implemented"); VERIFY_NOT_REACHED(); } PDFErrorOr> ColorSpace::create(Document* document, NonnullRefPtr color_space_array) { auto color_space_name = TRY(color_space_array->get_name_at(document, 0))->name(); Vector parameters; parameters.ensure_capacity(color_space_array->size() - 1); for (size_t i = 1; i < color_space_array->size(); i++) parameters.unchecked_append(color_space_array->at(i)); if (color_space_name == CommonNames::CalGray) return TRY(CalGrayColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::CalRGB) return TRY(CalRGBColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::DeviceN) return TRY(DeviceNColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::ICCBased) return TRY(ICCBasedColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::Indexed) return TRY(IndexedColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::Lab) return TRY(LabColorSpace::create(document, move(parameters))); if (color_space_name == CommonNames::Pattern) return Error::rendering_unsupported_error("Pattern color spaces not yet implemented"); if (color_space_name == CommonNames::Separation) return TRY(SeparationColorSpace::create(document, move(parameters))); dbgln("Unknown color space: {}", color_space_name); return Error::rendering_unsupported_error("unknown color space"); } NonnullRefPtr DeviceGrayColorSpace::the() { static auto instance = adopt_ref(*new DeviceGrayColorSpace()); return instance; } PDFErrorOr DeviceGrayColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 1); auto gray = static_cast(arguments[0].to_float() * 255.0f); return Color(gray, gray, gray); } Vector DeviceGrayColorSpace::default_decode() const { return { 0.0f, 1.0f }; } NonnullRefPtr DeviceRGBColorSpace::the() { static auto instance = adopt_ref(*new DeviceRGBColorSpace()); return instance; } PDFErrorOr DeviceRGBColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 3); auto r = static_cast(arguments[0].to_float() * 255.0f); auto g = static_cast(arguments[1].to_float() * 255.0f); auto b = static_cast(arguments[2].to_float() * 255.0f); return Color(r, g, b); } Vector DeviceRGBColorSpace::default_decode() const { return { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; } NonnullRefPtr DeviceCMYKColorSpace::the() { static auto instance = adopt_ref(*new DeviceCMYKColorSpace()); return instance; } PDFErrorOr DeviceCMYKColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 4); auto c = arguments[0].to_float(); auto m = arguments[1].to_float(); auto y = arguments[2].to_float(); auto k = arguments[3].to_float(); return Color::from_cmyk(c, m, y, k); } Vector DeviceCMYKColorSpace::default_decode() const { return { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; } PDFErrorOr> DeviceNColorSpace::create(Document*, Vector&& parameters) { // "[ /DeviceN names alternateSpace tintTransform ] // or // [ /DeviceN names alternateSpace tintTransform attributes ]" // (`/DeviceN` is already stripped from the array by the time we get here.) if (parameters.size() != 3 && parameters.size() != 4) return Error { Error::Type::MalformedPDF, "DeviceN color space expects 4 or 5 parameters" }; // "The names parameter is an array of name objects specifying the individual color components. // The length of the array determines the number of components in the DeviceN color space" auto names = parameters[0].get>()->cast(); // "The alternateSpace parameter is an array or name object that can be any device or CIE-based color space // but not another special color space (Pattern, Indexed, Separation, or DeviceN)." // FIXME: Implement. return adopt_ref(*new DeviceNColorSpace(names->size())); } PDFErrorOr DeviceNColorSpace::color(ReadonlySpan) const { return Error::rendering_unsupported_error("DeviceN color spaces not yet implemented"); } int DeviceNColorSpace::number_of_components() const { return m_number_of_components; } Vector DeviceNColorSpace::default_decode() const { Vector decoding_ranges; for (u8 i = 0; i < number_of_components(); i++) { decoding_ranges.append(0.0); decoding_ranges.append(1.0); } return decoding_ranges; } DeviceNColorSpace::DeviceNColorSpace(size_t number_of_components) : m_number_of_components(number_of_components) { } constexpr Array matrix_multiply(Array a, Array b) { return Array { a[0] * b[0] + a[1] * b[1] + a[2] * b[2], a[3] * b[0] + a[4] * b[1] + a[5] * b[2], a[6] * b[0] + a[7] * b[1] + a[8] * b[2] }; } // Converts to a flat XYZ space with white point = (1, 1, 1) // Step 2 of https://www.color.org/adobebpc.pdf constexpr Array flatten_and_normalize_whitepoint(Array whitepoint, Array xyz) { VERIFY(whitepoint[1] == 1.0f); return { (1.0f / whitepoint[0]) * xyz[0], xyz[1], (1.0f / whitepoint[2]) * xyz[2], }; } constexpr float decode_l(float input) { constexpr float decode_l_scaling_constant = 0.00110705646f; // (((8 + 16) / 116) ^ 3) / 8 if (input < 0.0f) return -decode_l(-input); if (input >= 0.0f && input <= 8.0f) return input * decode_l_scaling_constant; return powf(((input + 16.0f) / 116.0f), 3.0f); } constexpr Array scale_black_point(Array blackpoint, Array xyz) { auto y_dst = decode_l(0); // DestinationBlackPoint is just [0, 0, 0] auto y_src = decode_l(blackpoint[0]); auto scale = (1 - y_dst) / (1 - y_src); auto offset = 1 - scale; return { xyz[0] * scale + offset, xyz[1] * scale + offset, xyz[2] * scale + offset, }; } // https://en.wikipedia.org/wiki/Illuminant_D65 constexpr Array convert_to_d65(Array xyz) { constexpr float d65x = 0.95047f; constexpr float d65y = 1.0f; constexpr float d65z = 1.08883f; return { xyz[0] * d65x, xyz[1] * d65y, xyz[2] * d65z }; } // https://en.wikipedia.org/wiki/SRGB constexpr Array convert_to_srgb(Array xyz) { // See the sRGB D65 [M]^-1 matrix in the following page // http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html constexpr Array conversion_matrix = { 3.2404542, -1.5371385, -0.4985314, -0.969266, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252, }; auto linear_srgb = matrix_multiply(conversion_matrix, xyz); // FIXME: Use the real sRGB curve by replacing this function with Gfx::ICC::sRGB().from_pcs(). return { pow(linear_srgb[0], 1.0f / 2.2f), pow(linear_srgb[1], 1.0f / 2.2f), pow(linear_srgb[2], 1.0f / 2.2f) }; } PDFErrorOr> CalGrayColorSpace::create(Document* document, Vector&& parameters) { if (parameters.size() != 1) return Error { Error::Type::MalformedPDF, "Gray color space expects one parameter" }; auto param = parameters[0]; if (!param.has>() || !param.get>()->is()) return Error { Error::Type::MalformedPDF, "Gray color space expects a dict parameter" }; auto dict = param.get>()->cast(); if (!dict->contains(CommonNames::WhitePoint)) return Error { Error::Type::MalformedPDF, "Gray color space expects a Whitepoint key" }; auto white_point_array = TRY(dict->get_array(document, CommonNames::WhitePoint)); if (white_point_array->size() != 3) return Error { Error::Type::MalformedPDF, "Gray color space expects 3 Whitepoint parameters" }; auto color_space = adopt_ref(*new CalGrayColorSpace()); color_space->m_whitepoint[0] = white_point_array->at(0).to_float(); color_space->m_whitepoint[1] = white_point_array->at(1).to_float(); color_space->m_whitepoint[2] = white_point_array->at(2).to_float(); if (color_space->m_whitepoint[1] != 1.0f) return Error { Error::Type::MalformedPDF, "Gray color space expects 2nd Whitepoint to be 1.0" }; if (dict->contains(CommonNames::BlackPoint)) { auto black_point_array = TRY(dict->get_array(document, CommonNames::BlackPoint)); if (black_point_array->size() == 3) { color_space->m_blackpoint[0] = black_point_array->at(0).to_float(); color_space->m_blackpoint[1] = black_point_array->at(1).to_float(); color_space->m_blackpoint[2] = black_point_array->at(2).to_float(); } } if (dict->contains(CommonNames::Gamma)) { color_space->m_gamma = TRY(document->resolve(dict->get_value(CommonNames::Gamma))).to_float(); } return color_space; } PDFErrorOr CalGrayColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 1); auto a = clamp(arguments[0].to_float(), 0.0f, 1.0f); auto ag = powf(a, m_gamma); auto x = m_whitepoint[0] * ag; auto y = m_whitepoint[1] * ag; auto z = m_whitepoint[2] * ag; auto flattened_xyz = flatten_and_normalize_whitepoint(m_whitepoint, { x, y, z }); auto scaled_black_point_xyz = scale_black_point(m_blackpoint, flattened_xyz); auto d65_normalized = convert_to_d65(scaled_black_point_xyz); auto srgb = convert_to_srgb(d65_normalized); auto red = static_cast(clamp(srgb[0], 0.0f, 1.0f) * 255.0f); auto green = static_cast(clamp(srgb[1], 0.0f, 1.0f) * 255.0f); auto blue = static_cast(clamp(srgb[2], 0.0f, 1.0f) * 255.0f); return Color(red, green, blue); } Vector CalGrayColorSpace::default_decode() const { return { 0.0f, 1.0f }; } PDFErrorOr> CalRGBColorSpace::create(Document* document, Vector&& parameters) { if (parameters.size() != 1) return Error { Error::Type::MalformedPDF, "RGB color space expects one parameter" }; auto param = parameters[0]; if (!param.has>() || !param.get>()->is()) return Error { Error::Type::MalformedPDF, "RGB color space expects a dict parameter" }; auto dict = param.get>()->cast(); if (!dict->contains(CommonNames::WhitePoint)) return Error { Error::Type::MalformedPDF, "RGB color space expects a Whitepoint key" }; auto white_point_array = TRY(dict->get_array(document, CommonNames::WhitePoint)); if (white_point_array->size() != 3) return Error { Error::Type::MalformedPDF, "RGB color space expects 3 Whitepoint parameters" }; auto color_space = adopt_ref(*new CalRGBColorSpace()); color_space->m_whitepoint[0] = white_point_array->at(0).to_float(); color_space->m_whitepoint[1] = white_point_array->at(1).to_float(); color_space->m_whitepoint[2] = white_point_array->at(2).to_float(); if (color_space->m_whitepoint[1] != 1.0f) return Error { Error::Type::MalformedPDF, "RGB color space expects 2nd Whitepoint to be 1.0" }; if (dict->contains(CommonNames::BlackPoint)) { auto black_point_array = TRY(dict->get_array(document, CommonNames::BlackPoint)); if (black_point_array->size() == 3) { color_space->m_blackpoint[0] = black_point_array->at(0).to_float(); color_space->m_blackpoint[1] = black_point_array->at(1).to_float(); color_space->m_blackpoint[2] = black_point_array->at(2).to_float(); } } if (dict->contains(CommonNames::Gamma)) { auto gamma_array = TRY(dict->get_array(document, CommonNames::Gamma)); if (gamma_array->size() == 3) { color_space->m_gamma[0] = gamma_array->at(0).to_float(); color_space->m_gamma[1] = gamma_array->at(1).to_float(); color_space->m_gamma[2] = gamma_array->at(2).to_float(); } } if (dict->contains(CommonNames::Matrix)) { auto matrix_array = TRY(dict->get_array(document, CommonNames::Matrix)); if (matrix_array->size() == 9) { color_space->m_matrix[0] = matrix_array->at(0).to_float(); color_space->m_matrix[1] = matrix_array->at(1).to_float(); color_space->m_matrix[2] = matrix_array->at(2).to_float(); color_space->m_matrix[3] = matrix_array->at(3).to_float(); color_space->m_matrix[4] = matrix_array->at(4).to_float(); color_space->m_matrix[5] = matrix_array->at(5).to_float(); color_space->m_matrix[6] = matrix_array->at(6).to_float(); color_space->m_matrix[7] = matrix_array->at(7).to_float(); color_space->m_matrix[8] = matrix_array->at(8).to_float(); } } return color_space; } PDFErrorOr CalRGBColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 3); auto a = clamp(arguments[0].to_float(), 0.0f, 1.0f); auto b = clamp(arguments[1].to_float(), 0.0f, 1.0f); auto c = clamp(arguments[2].to_float(), 0.0f, 1.0f); auto agr = powf(a, m_gamma[0]); auto bgg = powf(b, m_gamma[1]); auto cgb = powf(c, m_gamma[2]); auto x = m_matrix[0] * agr + m_matrix[3] * bgg + m_matrix[6] * cgb; auto y = m_matrix[1] * agr + m_matrix[4] * bgg + m_matrix[7] * cgb; auto z = m_matrix[2] * agr + m_matrix[5] * bgg + m_matrix[8] * cgb; auto flattened_xyz = flatten_and_normalize_whitepoint(m_whitepoint, { x, y, z }); auto scaled_black_point_xyz = scale_black_point(m_blackpoint, flattened_xyz); auto d65_normalized = convert_to_d65(scaled_black_point_xyz); auto srgb = convert_to_srgb(d65_normalized); auto red = static_cast(clamp(srgb[0], 0.0f, 1.0f) * 255.0f); auto green = static_cast(clamp(srgb[1], 0.0f, 1.0f) * 255.0f); auto blue = static_cast(clamp(srgb[2], 0.0f, 1.0f) * 255.0f); return Color(red, green, blue); } Vector CalRGBColorSpace::default_decode() const { return { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; } PDFErrorOr> ICCBasedColorSpace::create(Document* document, Vector&& parameters) { if (parameters.is_empty()) return Error { Error::Type::MalformedPDF, "ICCBased color space expected one parameter" }; auto param = TRY(document->resolve(parameters[0])); if (!param.has>() || !param.get>()->is()) return Error { Error::Type::MalformedPDF, "ICCBased color space expects a stream parameter" }; auto stream = param.get>()->cast(); auto dict = stream->dict(); auto maybe_profile = Gfx::ICC::Profile::try_load_from_externally_owned_memory(stream->bytes()); if (!maybe_profile.is_error()) return adopt_ref(*new ICCBasedColorSpace(maybe_profile.release_value())); if (dict->contains(CommonNames::Alternate)) { auto alternate_color_space_object = MUST(dict->get_object(document, CommonNames::Alternate)); if (alternate_color_space_object->is()) return ColorSpace::create(alternate_color_space_object->cast()->name()); return Error { Error::Type::Internal, "Alternate color spaces in array format are not supported" }; } return Error { Error::Type::MalformedPDF, "Failed to load ICC color space with malformed profile and no alternate" }; } ICCBasedColorSpace::ICCBasedColorSpace(NonnullRefPtr profile) : m_profile(profile) { } PDFErrorOr ICCBasedColorSpace::color(ReadonlySpan arguments) const { if (!s_srgb_profile) s_srgb_profile = TRY(Gfx::ICC::sRGB()); Vector bytes; for (auto const& arg : arguments) { VERIFY(arg.has_number()); bytes.append(static_cast(arg.to_float() * 255.0f)); } auto pcs = TRY(m_profile->to_pcs(bytes)); Array output; TRY(s_srgb_profile->from_pcs(pcs, output.span())); return Color(output[0], output[1], output[2]); } int ICCBasedColorSpace::number_of_components() const { return Gfx::ICC::number_of_components_in_color_space(m_profile->data_color_space()); } Vector ICCBasedColorSpace::default_decode() const { auto color_space = m_profile->data_color_space(); switch (color_space) { case Gfx::ICC::ColorSpace::Gray: return { 0.0, 1.0 }; case Gfx::ICC::ColorSpace::RGB: return { 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 }; case Gfx::ICC::ColorSpace::CMYK: return { 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 }; default: warnln("PDF: Unknown default_decode params for color space {}", Gfx::ICC::data_color_space_name(color_space)); Vector decoding_ranges; for (u8 i = 0; i < Gfx::ICC::number_of_components_in_color_space(color_space); i++) { decoding_ranges.append(0.0); decoding_ranges.append(1.0); } return decoding_ranges; } } PDFErrorOr> LabColorSpace::create(Document* document, Vector&& parameters) { if (parameters.size() != 1) return Error { Error::Type::MalformedPDF, "Lab color space expects one parameter" }; auto param = parameters[0]; if (!param.has>() || !param.get>()->is()) return Error { Error::Type::MalformedPDF, "Lab color space expects a dict parameter" }; auto dict = param.get>()->cast(); if (!dict->contains(CommonNames::WhitePoint)) return Error { Error::Type::MalformedPDF, "Lab color space expects a Whitepoint key" }; auto white_point_array = TRY(dict->get_array(document, CommonNames::WhitePoint)); if (white_point_array->size() != 3) return Error { Error::Type::MalformedPDF, "Lab color space expects 3 Whitepoint parameters" }; auto color_space = adopt_ref(*new LabColorSpace()); color_space->m_whitepoint[0] = white_point_array->at(0).to_float(); color_space->m_whitepoint[1] = white_point_array->at(1).to_float(); color_space->m_whitepoint[2] = white_point_array->at(2).to_float(); if (color_space->m_whitepoint[1] != 1.0f) return Error { Error::Type::MalformedPDF, "Lab color space expects 2nd Whitepoint to be 1.0" }; if (dict->contains(CommonNames::BlackPoint)) { auto black_point_array = TRY(dict->get_array(document, CommonNames::BlackPoint)); if (black_point_array->size() == 3) { color_space->m_blackpoint[0] = black_point_array->at(0).to_float(); color_space->m_blackpoint[1] = black_point_array->at(1).to_float(); color_space->m_blackpoint[2] = black_point_array->at(2).to_float(); } } if (dict->contains(CommonNames::Range)) { auto range_array = TRY(dict->get_array(document, CommonNames::Range)); if (range_array->size() == 4) { color_space->m_range[0] = range_array->at(0).to_float(); color_space->m_range[1] = range_array->at(1).to_float(); color_space->m_range[2] = range_array->at(2).to_float(); color_space->m_range[3] = range_array->at(3).to_float(); } } return color_space; } PDFErrorOr LabColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 3); auto L_star = clamp(arguments[0].to_float(), 0.0f, 100.0f); auto a_star = clamp(arguments[1].to_float(), m_range[0], m_range[1]); auto b_star = clamp(arguments[2].to_float(), m_range[2], m_range[3]); auto L = (L_star + 16) / 116 + a_star / 500; auto M = (L_star + 16) / 116; auto N = (L_star + 16) / 116 - b_star / 200; auto g = [](float x) { if (x >= 6.0f / 29.0f) return powf(x, 3); return 108.0f / 841.0f * (x - 4.0f / 29.0f); }; auto x = m_whitepoint[0] * g(L); auto y = m_whitepoint[1] * g(M); auto z = m_whitepoint[2] * g(N); auto flattened_xyz = flatten_and_normalize_whitepoint(m_whitepoint, { x, y, z }); auto scaled_black_point_xyz = scale_black_point(m_blackpoint, flattened_xyz); auto d65_normalized = convert_to_d65(scaled_black_point_xyz); auto srgb = convert_to_srgb(d65_normalized); auto red = static_cast(clamp(srgb[0], 0.0f, 1.0f) * 255.0f); auto green = static_cast(clamp(srgb[1], 0.0f, 1.0f) * 255.0f); auto blue = static_cast(clamp(srgb[2], 0.0f, 1.0f) * 255.0f); return Color(red, green, blue); } Vector LabColorSpace::default_decode() const { return { 0.0f, 100.0f, m_range[0], m_range[1], m_range[2], m_range[3] }; } PDFErrorOr> IndexedColorSpace::create(Document* document, Vector&& parameters) { if (parameters.size() != 3) return Error { Error::Type::MalformedPDF, "Indexed color space expected three parameters" }; // "The base parameter is an array or name that identifies the base color space in which the values // in the color table are to be interpreted. It can be any device or CIE-based color space or (in PDF 1.3) // a Separation or DeviceN space, but not a Pattern space or another Indexed space." auto param0 = TRY(document->resolve(parameters[0])); if (!param0.has>()) return Error { Error::Type::MalformedPDF, "Indexed color space expects object for first arg" }; auto base_object = param0.get>(); auto base = TRY(ColorSpace::create(document, base_object)); if (base->family().name() == ColorSpaceFamily::Pattern.name() || base->family().name() == ColorSpaceFamily::Indexed.name()) return Error { Error::Type::MalformedPDF, "Indexed color space has invalid base color space" }; // "The hival parameter is an integer that specifies the maximum valid index value. In other words, // the color table is to be indexed by integers in the range 0 to hival. hival can be no greater than 255" auto param1 = TRY(document->resolve(parameters[1])); if (!param1.has()) return Error { Error::Type::MalformedPDF, "Indexed color space expects int for second arg" }; auto hival = param1.get(); // "The color table is defined by the lookup parameter, which can be either a stream or (in PDF 1.2) a byte string. // It provides the mapping between index values and the corresponding colors in the base color space. // The color table data must be m × (hival + 1) bytes long, where m is the number of color components in the // base color space. Each byte is an unsigned integer in the range 0 to 255 that is scaled to the range of // the corresponding color component in the base color space; that is, 0 corresponds to the minimum value // in the range for that component, and 255 corresponds to the maximum." auto param2 = TRY(document->resolve(parameters[2])); if (!param2.has>()) return Error { Error::Type::MalformedPDF, "Indexed color space expects object for third arg" }; auto lookup_object = param2.get>(); Vector lookup; if (lookup_object->is()) { lookup = Vector { lookup_object->cast()->bytes() }; } else if (lookup_object->is()) { // FIXME: Check if it's a hex string. auto const& string = lookup_object->cast()->string(); lookup = Vector { ReadonlyBytes { string.characters(), string.length() } }; } else { return Error { Error::Type::MalformedPDF, "Indexed color space expects stream or string for third arg" }; } if (static_cast(lookup.size()) != (hival + 1) * base->number_of_components()) return Error { Error::Type::MalformedPDF, "Indexed color space lookup table doesn't match size" }; auto color_space = adopt_ref(*new IndexedColorSpace(move(base))); color_space->m_hival = hival; color_space->m_lookup = move(lookup); return color_space; } IndexedColorSpace::IndexedColorSpace(NonnullRefPtr base) : m_base(move(base)) { } PDFErrorOr IndexedColorSpace::color(ReadonlySpan arguments) const { VERIFY(arguments.size() == 1); auto index = arguments[0].to_int(); if (index < 0 || index > m_hival) return Error { Error::Type::MalformedPDF, "Indexed color space index out of range" }; Vector components; size_t const n = m_base->number_of_components(); for (size_t i = 0; i < n; ++i) TRY(components.try_append(Value(m_lookup[index * n + i] / 255.0f))); return m_base->color(components); } Vector IndexedColorSpace::default_decode() const { return { 0.0, static_cast(m_hival) }; } PDFErrorOr> SeparationColorSpace::create(Document* document, Vector&& parameters) { if (parameters.size() != 3) return Error { Error::Type::MalformedPDF, "Separation color space expected three parameters" }; // "The name parameter is a name object specifying the name of the colorant that this Separation color space // is intended to represent (or one of the special names All or None; see below)" auto param0 = TRY(document->resolve(parameters[0])); if (!param0.has>()) return Error { Error::Type::MalformedPDF, "Separation color space expects object for first arg" }; auto name_object = param0.get>(); if (!name_object->is()) return Error { Error::Type::MalformedPDF, "Separation color space expects name object for first arg" }; auto name = name_object->cast()->name(); // "The alternateSpace parameter must be an array or name object that identifies the alternate color space, // which can be any device or CIE-based color space but not another special color space // (Pattern, Indexed, Separation, or DeviceN)." auto param1 = TRY(document->resolve(parameters[1])); if (!param1.has>()) return Error { Error::Type::MalformedPDF, "Separation color space expects object for second arg" }; auto alternate_space_object = param1.get>(); auto alternate_space = TRY(ColorSpace::create(document, alternate_space_object)); auto family = alternate_space->family(); if (family.name() == ColorSpaceFamily::Pattern.name() || family.name() == ColorSpaceFamily::Indexed.name() || family.name() == ColorSpaceFamily::Separation.name() || family.name() == ColorSpaceFamily::DeviceN.name()) return Error { Error::Type::MalformedPDF, "Separation color space has invalid alternate color space" }; // "The tintTransform parameter must be a function" auto param2 = TRY(document->resolve(parameters[2])); if (!param2.has>()) return Error { Error::Type::MalformedPDF, "Separation color space expects object for third arg" }; auto tint_transform_object = param2.get>(); auto tint_transform = TRY(Function::create(document, tint_transform_object)); auto color_space = adopt_ref(*new SeparationColorSpace(move(alternate_space), move(tint_transform))); color_space->m_name = move(name); return color_space; } SeparationColorSpace::SeparationColorSpace(NonnullRefPtr alternate_space, NonnullRefPtr tint_transform) : m_alternate_space(move(alternate_space)) , m_tint_transform(move(tint_transform)) { } PDFErrorOr SeparationColorSpace::color(ReadonlySpan arguments) const { // "For an additive device such as a computer display, a Separation color space never applies a process colorant directly; // it always reverts to the alternate color space as described below." // "During subsequent painting operations, an application calls [the tint] function to transform a tint value into // color component values in the alternate color space." // FIXME: Does this need handling for the special colorant names "All" and "None"? // FIXME: When drawing to a printer, do something else. VERIFY(arguments.size() == 1); auto a = arguments[0].to_float(); auto tint_output = TRY(m_tint_transform->evaluate(ReadonlySpan { &a, 1 })); m_tint_output_values.resize(tint_output.size()); for (size_t i = 0; i < tint_output.size(); ++i) m_tint_output_values[i] = tint_output[i]; return m_alternate_space->color(m_tint_output_values); } Vector SeparationColorSpace::default_decode() const { return { 0.0f, 1.0f }; } }