/* * Copyright (c) 2024, Andrew Kaster * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Web::Crypto { // https://w3c.github.io/webcrypto/#concept-usage-intersection static Vector usage_intersection(ReadonlySpan a, ReadonlySpan b) { Vector result; for (auto const& usage : a) { if (b.contains_slow(usage)) result.append(usage); } quick_sort(result); return result; } // Out of line to ensure this class has a key function AlgorithmMethods::~AlgorithmMethods() = default; // https://w3c.github.io/webcrypto/#big-integer static ::Crypto::UnsignedBigInteger big_integer_from_api_big_integer(JS::GCPtr const& big_integer) { static_assert(AK::HostIsLittleEndian, "This method needs special treatment for BE"); // The BigInteger typedef is a Uint8Array that holds an arbitrary magnitude unsigned integer // **in big-endian order**. Values read from the API SHALL have minimal typed array length // (that is, at most 7 leading zero bits, except the value 0 which shall have length 8 bits). // The API SHALL accept values with any number of leading zero bits, including the empty array, which represents zero. auto const& buffer = big_integer->viewed_array_buffer()->buffer(); ::Crypto::UnsignedBigInteger result(0); if (buffer.size() > 0) { // We need to reverse the buffer to get it into little-endian order Vector reversed_buffer; reversed_buffer.resize(buffer.size()); for (size_t i = 0; i < buffer.size(); ++i) { reversed_buffer[buffer.size() - i - 1] = buffer[i]; } result = ::Crypto::UnsignedBigInteger::import_data(reversed_buffer.data(), reversed_buffer.size()); } return result; } // https://www.rfc-editor.org/rfc/rfc7518#section-2 ErrorOr base64_url_uint_encode(::Crypto::UnsignedBigInteger integer) { static_assert(AK::HostIsLittleEndian, "This code assumes little-endian"); // The representation of a positive or zero integer value as the // base64url encoding of the value's unsigned big-endian // representation as an octet sequence. The octet sequence MUST // utilize the minimum number of octets needed to represent the // value. Zero is represented as BASE64URL(single zero-valued // octet), which is "AA". auto bytes = TRY(ByteBuffer::create_uninitialized(integer.trimmed_byte_length())); bool const remove_leading_zeroes = true; auto data_size = integer.export_data(bytes.span(), remove_leading_zeroes); auto data_slice = bytes.bytes().slice(bytes.size() - data_size, data_size); // We need to encode the integer's big endian representation as a base64 string Vector byte_swapped_data; byte_swapped_data.ensure_capacity(data_size); for (size_t i = 0; i < data_size; ++i) byte_swapped_data.append(data_slice[data_size - i - 1]); auto encoded = TRY(encode_base64url(byte_swapped_data)); // FIXME: create a version of encode_base64url that omits padding bytes if (auto first_padding_byte = encoded.find_byte_offset('='); first_padding_byte.has_value()) return encoded.substring_from_byte_offset(0, first_padding_byte.value()); return encoded; } WebIDL::ExceptionOr<::Crypto::UnsignedBigInteger> base64_url_uint_decode(JS::Realm& realm, String const& base64_url_string) { auto& vm = realm.vm(); static_assert(AK::HostIsLittleEndian, "This code assumes little-endian"); // FIXME: Create a version of decode_base64url that ignores padding inconsistencies auto padded_string = base64_url_string; if (padded_string.byte_count() % 4 != 0) { padded_string = TRY_OR_THROW_OOM(vm, String::formatted("{}{}", padded_string, TRY_OR_THROW_OOM(vm, String::repeated('=', 4 - (padded_string.byte_count() % 4))))); } auto base64_bytes_or_error = decode_base64url(padded_string); if (base64_bytes_or_error.is_error()) { if (base64_bytes_or_error.error().code() == ENOMEM) return vm.throw_completion(vm.error_message(::JS::VM::ErrorMessage::OutOfMemory)); return WebIDL::DataError::create(realm, MUST(String::formatted("base64 decode: {}", base64_bytes_or_error.release_error()))); } auto base64_bytes = base64_bytes_or_error.release_value(); // We need to swap the integer's big-endian representation to little endian in order to import it Vector byte_swapped_data; byte_swapped_data.ensure_capacity(base64_bytes.size()); for (size_t i = 0; i < base64_bytes.size(); ++i) byte_swapped_data.append(base64_bytes[base64_bytes.size() - i - 1]); return ::Crypto::UnsignedBigInteger::import_data(byte_swapped_data.data(), byte_swapped_data.size()); } // https://w3c.github.io/webcrypto/#concept-parse-an-asn1-structure template static WebIDL::ExceptionOr parse_an_ASN1_structure(JS::Realm& realm, ReadonlyBytes data, bool exact_data = true) { // 1. Let data be a sequence of bytes to be parsed. // 2. Let structure be the ASN.1 structure to be parsed. // 3. Let exactData be an optional boolean value. If it is not supplied, let it be initialized to true. // 4. Parse data according to the Distinguished Encoding Rules of [X690], using structure as the ASN.1 structure to be decoded. ::Crypto::ASN1::Decoder decoder(data); Structure structure; if constexpr (IsSame) { auto maybe_subject_public_key = TLS::parse_subject_public_key_info(decoder); if (maybe_subject_public_key.is_error()) return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing subjectPublicKeyInfo: {}", maybe_subject_public_key.release_error()))); structure = maybe_subject_public_key.release_value(); } else if constexpr (IsSame) { auto maybe_private_key = TLS::parse_private_key_info(decoder); if (maybe_private_key.is_error()) return WebIDL::DataError::create(realm, MUST(String::formatted("Error parsing privateKeyInfo: {}", maybe_private_key.release_error()))); structure = maybe_private_key.release_value(); } else { static_assert(DependentFalse, "Don't know how to parse ASN.1 structure type"); } // 5. If exactData was specified, and all of the bytes of data were not consumed during the parsing phase, then throw a DataError. if (exact_data && !decoder.eof()) return WebIDL::DataError::create(realm, "Not all bytes were consumed during the parsing phase"_fly_string); // 6. Return the parsed ASN.1 structure. return structure; } // https://w3c.github.io/webcrypto/#concept-parse-a-spki static WebIDL::ExceptionOr parse_a_subject_public_key_info(JS::Realm& realm, ReadonlyBytes bytes) { // When this specification says to parse a subjectPublicKeyInfo, the user agent must parse an ASN.1 structure, // with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of subjectPublicKeyInfo, // as specified in [RFC5280], and exactData set to true. return parse_an_ASN1_structure(realm, bytes, true); } // https://w3c.github.io/webcrypto/#concept-parse-a-privateKeyInfo static WebIDL::ExceptionOr parse_a_private_key_info(JS::Realm& realm, ReadonlyBytes bytes) { // When this specification says to parse a PrivateKeyInfo, the user agent must parse an ASN.1 structure // with data set to the sequence of bytes to be parsed, structure as the ASN.1 structure of PrivateKeyInfo, // as specified in [RFC5208], and exactData set to true. return parse_an_ASN1_structure(realm, bytes, true); } static WebIDL::ExceptionOr<::Crypto::PK::RSAPrivateKey<>> parse_jwk_rsa_private_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk) { auto n = TRY(base64_url_uint_decode(realm, *jwk.n)); auto d = TRY(base64_url_uint_decode(realm, *jwk.d)); auto e = TRY(base64_url_uint_decode(realm, *jwk.e)); // We know that if any of the extra parameters are provided, all of them must be if (!jwk.p.has_value()) return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), 0, 0); auto p = TRY(base64_url_uint_decode(realm, *jwk.p)); auto q = TRY(base64_url_uint_decode(realm, *jwk.q)); auto dp = TRY(base64_url_uint_decode(realm, *jwk.dp)); auto dq = TRY(base64_url_uint_decode(realm, *jwk.dq)); auto qi = TRY(base64_url_uint_decode(realm, *jwk.qi)); return ::Crypto::PK::RSAPrivateKey<>(move(n), move(d), move(e), move(p), move(q), move(dp), move(dq), move(qi)); } static WebIDL::ExceptionOr<::Crypto::PK::RSAPublicKey<>> parse_jwk_rsa_public_key(JS::Realm& realm, Bindings::JsonWebKey const& jwk) { auto e = TRY(base64_url_uint_decode(realm, *jwk.e)); auto n = TRY(base64_url_uint_decode(realm, *jwk.n)); return ::Crypto::PK::RSAPublicKey<>(move(n), move(e)); } AlgorithmParams::~AlgorithmParams() = default; JS::ThrowCompletionOr> AlgorithmParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name = TRY(object.get("name")); auto name_string = TRY(name.to_string(vm)); return adopt_own(*new AlgorithmParams { name_string }); } PBKDF2Params::~PBKDF2Params() = default; JS::ThrowCompletionOr> PBKDF2Params::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto salt_value = TRY(object.get("salt")); if (!salt_value.is_object() || !(is(salt_value.as_object()) || is(salt_value.as_object()) || is(salt_value.as_object()))) return vm.throw_completion(JS::ErrorType::NotAnObjectOfType, "BufferSource"); auto salt = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(salt_value.as_object())); auto iterations_value = TRY(object.get("iterations")); auto iterations = TRY(iterations_value.to_u32(vm)); auto hash_value = TRY(object.get("hash")); auto hash = TRY(hash_value.to_string(vm)); return adopt_own(*new PBKDF2Params { name, salt, iterations, hash }); } RsaKeyGenParams::~RsaKeyGenParams() = default; JS::ThrowCompletionOr> RsaKeyGenParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto modulus_length_value = TRY(object.get("modulusLength")); auto modulus_length = TRY(modulus_length_value.to_u32(vm)); auto public_exponent_value = TRY(object.get("publicExponent")); JS::GCPtr public_exponent; if (!public_exponent_value.is_object() || !is(public_exponent_value.as_object())) return vm.throw_completion(JS::ErrorType::NotAnObjectOfType, "Uint8Array"); public_exponent = static_cast(public_exponent_value.as_object()); return adopt_own(*new RsaKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent) }); } RsaHashedKeyGenParams::~RsaHashedKeyGenParams() = default; JS::ThrowCompletionOr> RsaHashedKeyGenParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto modulus_length_value = TRY(object.get("modulusLength")); auto modulus_length = TRY(modulus_length_value.to_u32(vm)); auto public_exponent_value = TRY(object.get("publicExponent")); JS::GCPtr public_exponent; if (!public_exponent_value.is_object() || !is(public_exponent_value.as_object())) return vm.throw_completion(JS::ErrorType::NotAnObjectOfType, "Uint8Array"); public_exponent = static_cast(public_exponent_value.as_object()); auto hash_value = TRY(object.get("hash")); auto hash = Variant { Empty {} }; if (hash_value.is_string()) { auto hash_string = TRY(hash_value.to_string(vm)); hash = HashAlgorithmIdentifier { hash_string }; } else { auto hash_object = TRY(hash_value.to_object(vm)); hash = HashAlgorithmIdentifier { hash_object }; } return adopt_own(*new RsaHashedKeyGenParams { name, modulus_length, big_integer_from_api_big_integer(public_exponent), hash.get() }); } RsaHashedImportParams::~RsaHashedImportParams() = default; JS::ThrowCompletionOr> RsaHashedImportParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto hash_value = TRY(object.get("hash")); auto hash = Variant { Empty {} }; if (hash_value.is_string()) { auto hash_string = TRY(hash_value.to_string(vm)); hash = HashAlgorithmIdentifier { hash_string }; } else { auto hash_object = TRY(hash_value.to_object(vm)); hash = HashAlgorithmIdentifier { hash_object }; } return adopt_own(*new RsaHashedImportParams { name, hash.get() }); } RsaOaepParams::~RsaOaepParams() = default; JS::ThrowCompletionOr> RsaOaepParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto label_value = TRY(object.get("label")); ByteBuffer label; if (!label_value.is_nullish()) { if (!label_value.is_object() || !(is(label_value.as_object()) || is(label_value.as_object()) || is(label_value.as_object()))) return vm.throw_completion(JS::ErrorType::NotAnObjectOfType, "BufferSource"); label = TRY_OR_THROW_OOM(vm, WebIDL::get_buffer_source_copy(label_value.as_object())); } return adopt_own(*new RsaOaepParams { name, move(label) }); } EcdsaParams::~EcdsaParams() = default; JS::ThrowCompletionOr> EcdsaParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto hash_value = TRY(object.get("hash")); auto hash = Variant { Empty {} }; if (hash_value.is_string()) { auto hash_string = TRY(hash_value.to_string(vm)); hash = HashAlgorithmIdentifier { hash_string }; } else { auto hash_object = TRY(hash_value.to_object(vm)); hash = HashAlgorithmIdentifier { hash_object }; } return adopt_own(*new EcdsaParams { name, hash.get() }); } EcKeyGenParams::~EcKeyGenParams() = default; JS::ThrowCompletionOr> EcKeyGenParams::from_value(JS::VM& vm, JS::Value value) { auto& object = value.as_object(); auto name_value = TRY(object.get("name")); auto name = TRY(name_value.to_string(vm)); auto curve_value = TRY(object.get("namedCurve")); auto curve = TRY(curve_value.to_string(vm)); return adopt_own(*new EcKeyGenParams { name, curve }); } // https://w3c.github.io/webcrypto/#rsa-oaep-operations WebIDL::ExceptionOr> RSAOAEP::encrypt(AlgorithmParams const& params, JS::NonnullGCPtr key, ByteBuffer const& plaintext) { auto& realm = m_realm; auto& vm = realm.vm(); auto const& normalized_algorithm = static_cast(params); // 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Public) return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string); // 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present. [[maybe_unused]] auto const& label = normalized_algorithm.label; // 3. Perform the encryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA public key, // the contents of plaintext as the message to be encrypted, M and label as the label, L, and with the hash function specified by the hash attribute // of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option. // 4. If performing the operation results in an error, then throw an OperationError. // 5. Let ciphertext be the value C that results from performing the operation. // FIXME: Actually encrypt the data auto ciphertext = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(plaintext)); // 6. Return the result of creating an ArrayBuffer containing ciphertext. return JS::ArrayBuffer::create(realm, move(ciphertext)); } // https://w3c.github.io/webcrypto/#rsa-oaep-operations WebIDL::ExceptionOr> RSAOAEP::decrypt(AlgorithmParams const& params, JS::NonnullGCPtr key, AK::ByteBuffer const& ciphertext) { auto& realm = m_realm; auto& vm = realm.vm(); auto const& normalized_algorithm = static_cast(params); // 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Private) return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string); // 2. Let label be the contents of the label member of normalizedAlgorithm or the empty octet string if the label member of normalizedAlgorithm is not present. [[maybe_unused]] auto const& label = normalized_algorithm.label; // 3. Perform the decryption operation defined in Section 7.1 of [RFC3447] with the key represented by key as the recipient's RSA private key, // the contents of ciphertext as the ciphertext to be decrypted, C, and label as the label, L, and with the hash function specified by the hash attribute // of the [[algorithm]] internal slot of key as the Hash option and MGF1 (defined in Section B.2.1 of [RFC3447]) as the MGF option. // 4. If performing the operation results in an error, then throw an OperationError. // 5. Let plaintext the value M that results from performing the operation. // FIXME: Actually decrypt the data auto plaintext = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(ciphertext)); // 6. Return the result of creating an ArrayBuffer containing plaintext. return JS::ArrayBuffer::create(realm, move(plaintext)); } // https://w3c.github.io/webcrypto/#rsa-oaep-operations WebIDL::ExceptionOr, JS::NonnullGCPtr>> RSAOAEP::generate_key(AlgorithmParams const& params, bool extractable, Vector const& key_usages) { // 1. If usages contains an entry which is not "encrypt", "decrypt", "wrapKey" or "unwrapKey", then throw a SyntaxError. for (auto const& usage : key_usages) { if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Wrapkey && usage != Bindings::KeyUsage::Unwrapkey) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } // 2. Generate an RSA key pair, as defined in [RFC3447], with RSA modulus length equal to the modulusLength member of normalizedAlgorithm // and RSA public exponent equal to the publicExponent member of normalizedAlgorithm. // 3. If performing the operation results in an error, then throw an OperationError. auto const& normalized_algorithm = static_cast(params); auto key_pair = ::Crypto::PK::RSA::generate_key_pair(normalized_algorithm.modulus_length, normalized_algorithm.public_exponent); // 4. Let algorithm be a new RsaHashedKeyAlgorithm object. auto algorithm = RsaHashedKeyAlgorithm::create(m_realm); // 5. Set the name attribute of algorithm to "RSA-OAEP". algorithm->set_name("RSA-OAEP"_string); // 6. Set the modulusLength attribute of algorithm to equal the modulusLength member of normalizedAlgorithm. algorithm->set_modulus_length(normalized_algorithm.modulus_length); // 7. Set the publicExponent attribute of algorithm to equal the publicExponent member of normalizedAlgorithm. TRY(algorithm->set_public_exponent(normalized_algorithm.public_exponent)); // 8. Set the hash attribute of algorithm to equal the hash member of normalizedAlgorithm. algorithm->set_hash(normalized_algorithm.hash); // 9. Let publicKey be a new CryptoKey representing the public key of the generated key pair. auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.public_key }); // 10. Set the [[type]] internal slot of publicKey to "public" public_key->set_type(Bindings::KeyType::Public); // 11. Set the [[algorithm]] internal slot of publicKey to algorithm. public_key->set_algorithm(algorithm); // 12. Set the [[extractable]] internal slot of publicKey to true. public_key->set_extractable(true); // 13. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "encrypt", "wrapKey" ]. public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Encrypt, Bindings::KeyUsage::Wrapkey } })); // 14. Let privateKey be a new CryptoKey representing the private key of the generated key pair. auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { key_pair.private_key }); // 15. Set the [[type]] internal slot of privateKey to "private" private_key->set_type(Bindings::KeyType::Private); // 16. Set the [[algorithm]] internal slot of privateKey to algorithm. private_key->set_algorithm(algorithm); // 17. Set the [[extractable]] internal slot of privateKey to extractable. private_key->set_extractable(extractable); // 18. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "decrypt", "unwrapKey" ]. private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Decrypt, Bindings::KeyUsage::Unwrapkey } })); // 19. Let result be a new CryptoKeyPair dictionary. // 20. Set the publicKey attribute of result to be publicKey. // 21. Set the privateKey attribute of result to be privateKey. // 22. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL]. return Variant, JS::NonnullGCPtr> { CryptoKeyPair::create(m_realm, public_key, private_key) }; } // https://w3c.github.io/webcrypto/#rsa-oaep-operations WebIDL::ExceptionOr> RSAOAEP::import_key(Web::Crypto::AlgorithmParams const& params, Bindings::KeyFormat key_format, CryptoKey::InternalKeyData key_data, bool extractable, Vector const& usages) { auto& realm = m_realm; // 1. Let keyData be the key data to be imported. JS::GCPtr key = nullptr; auto const& normalized_algorithm = static_cast(params); // 2. -> If format is "spki": if (key_format == Bindings::KeyFormat::Spki) { // 1. If usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError. for (auto const& usage : usages) { if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } VERIFY(key_data.has()); // 2. Let spki be the result of running the parse a subjectPublicKeyInfo algorithm over keyData. // 3. If an error occurred while parsing, then throw a DataError. auto spki = TRY(parse_a_subject_public_key_info(m_realm, key_data.get())); // 4. If the algorithm object identifier field of the algorithm AlgorithmIdentifier field of spki // is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError. if (spki.algorithm.identifier != TLS::rsa_encryption_oid) return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_fly_string); // 5. Let publicKey be the result of performing the parse an ASN.1 structure algorithm, // with data as the subjectPublicKeyInfo field of spki, structure as the RSAPublicKey structure // specified in Section A.1.1 of [RFC3447], and exactData set to true. // NOTE: We already did this in parse_a_subject_public_key_info auto& public_key = spki.rsa; // 6. If an error occurred while parsing, or it can be determined that publicKey is not // a valid public key according to [RFC3447], then throw a DataError. // FIXME: Validate the public key // 7. Let key be a new CryptoKey that represents the RSA public key identified by publicKey. key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key }); // 8. Set the [[type]] internal slot of key to "public" key->set_type(Bindings::KeyType::Public); } // -> If format is "pkcs8": else if (key_format == Bindings::KeyFormat::Pkcs8) { // 1. If usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError. for (auto const& usage : usages) { if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } VERIFY(key_data.has()); // 2. Let privateKeyInfo be the result of running the parse a privateKeyInfo algorithm over keyData. // 3. If an error occurred while parsing, then throw a DataError. auto private_key_info = TRY(parse_a_private_key_info(m_realm, key_data.get())); // 4. If the algorithm object identifier field of the privateKeyAlgorithm PrivateKeyAlgorithm field of privateKeyInfo // is not equal to the rsaEncryption object identifier defined in [RFC3447], then throw a DataError. if (private_key_info.algorithm.identifier != TLS::rsa_encryption_oid) return WebIDL::DataError::create(m_realm, "Algorithm object identifier is not the rsaEncryption object identifier"_fly_string); // 5. Let rsaPrivateKey be the result of performing the parse an ASN.1 structure algorithm, // with data as the privateKey field of privateKeyInfo, structure as the RSAPrivateKey structure // specified in Section A.1.2 of [RFC3447], and exactData set to true. // NOTE: We already did this in parse_a_private_key_info auto& rsa_private_key = private_key_info.rsa; // 6. If an error occurred while parsing, or if rsaPrivateKey is not // a valid RSA private key according to [RFC3447], then throw a DataError. // FIXME: Validate the private key // 7. Let key be a new CryptoKey that represents the RSA private key identified by rsaPrivateKey. key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { rsa_private_key }); // 8. Set the [[type]] internal slot of key to "private" key->set_type(Bindings::KeyType::Private); } // -> If format is "jwk": else if (key_format == Bindings::KeyFormat::Jwk) { // 1. -> If keyData is a JsonWebKey dictionary: // Let jwk equal keyData. // -> Otherwise: // Throw a DataError. if (!key_data.has()) return WebIDL::DataError::create(m_realm, "keyData is not a JsonWebKey dictionary"_fly_string); auto& jwk = key_data.get(); // 2. If the d field of jwk is present and usages contains an entry which is not "decrypt" or "unwrapKey", then throw a SyntaxError. if (jwk.d.has_value()) { for (auto const& usage : usages) { if (usage != Bindings::KeyUsage::Decrypt && usage != Bindings::KeyUsage::Unwrapkey) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage)))); } } } // 3. If the d field of jwk is not present and usages contains an entry which is not "encrypt" or "wrapKey", then throw a SyntaxError. if (!jwk.d.has_value()) { for (auto const& usage : usages) { if (usage != Bindings::KeyUsage::Encrypt && usage != Bindings::KeyUsage::Wrapkey) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", Bindings::idl_enum_to_string(usage)))); } } } // 4. If the kty field of jwk is not a case-sensitive string match to "RSA", then throw a DataError. if (jwk.kty != "RSA"_string) return WebIDL::DataError::create(m_realm, "Invalid key type"_fly_string); // 5. If usages is non-empty and the use field of jwk is present and is not a case-sensitive string match to "enc", then throw a DataError. if (!usages.is_empty() && jwk.use.has_value() && *jwk.use != "enc"_string) return WebIDL::DataError::create(m_realm, "Invalid use field"_fly_string); // 6. If the key_ops field of jwk is present, and is invalid according to the requirements of JSON Web Key [JWK] // or does not contain all of the specified usages values, then throw a DataError. for (auto const& usage : usages) { if (!jwk.key_ops->contains_slow(Bindings::idl_enum_to_string(usage))) return WebIDL::DataError::create(m_realm, MUST(String::formatted("Missing key_ops field: {}", Bindings::idl_enum_to_string(usage)))); } // FIXME: Validate jwk.key_ops against requirements in https://www.rfc-editor.org/rfc/rfc7517#section-4.3 // 7. If the ext field of jwk is present and has the value false and extractable is true, then throw a DataError. if (jwk.ext.has_value() && !*jwk.ext && extractable) return WebIDL::DataError::create(m_realm, "Invalid ext field"_fly_string); Optional hash = {}; // 8. -> If the alg field of jwk is not present: if (!jwk.alg.has_value()) { // Let hash be undefined. } // -> If the alg field of jwk is equal to "RSA-OAEP": if (jwk.alg == "RSA-OAEP"sv) { // Let hash be the string "SHA-1". hash = "SHA-1"_string; } // -> If the alg field of jwk is equal to "RSA-OAEP-256": else if (jwk.alg == "RSA-OAEP-256"sv) { // Let hash be the string "SHA-256". hash = "SHA-256"_string; } // -> If the alg field of jwk is equal to "RSA-OAEP-384": else if (jwk.alg == "RSA-OAEP-384"sv) { // Let hash be the string "SHA-384". hash = "SHA-384"_string; } // -> If the alg field of jwk is equal to "RSA-OAEP-512": else if (jwk.alg == "RSA-OAEP-512"sv) { // Let hash be the string "SHA-512". hash = "SHA-512"_string; } // -> Otherwise: else { // FIXME: Support 'other applicable specifications' // 1. Perform any key import steps defined by other applicable specifications, passing format, jwk and obtaining hash. // 2. If an error occurred or there are no applicable specifications, throw a DataError. return WebIDL::DataError::create(m_realm, "Invalid alg field"_fly_string); } // 9. If hash is not undefined: if (hash.has_value()) { // 1. Let normalizedHash be the result of normalize an algorithm with alg set to hash and op set to digest. auto normalized_hash = TRY(normalize_an_algorithm(m_realm, AlgorithmIdentifier { *hash }, "digest"_string)); // 2. If normalizedHash is not equal to the hash member of normalizedAlgorithm, throw a DataError. if (normalized_hash.parameter->name != TRY(normalized_algorithm.hash.visit([](String const& name) -> JS::ThrowCompletionOr { return name; }, [&](JS::Handle const& obj) -> JS::ThrowCompletionOr { auto name_property = TRY(obj->get("name")); return name_property.to_string(m_realm.vm()); }))) return WebIDL::DataError::create(m_realm, "Invalid hash"_fly_string); } // 10. -> If the d field of jwk is present: if (jwk.d.has_value()) { // 1. If jwk does not meet the requirements of Section 6.3.2 of JSON Web Algorithms [JWA], then throw a DataError. bool meets_requirements = jwk.e.has_value() && jwk.n.has_value() && jwk.d.has_value(); if (jwk.p.has_value() || jwk.q.has_value() || jwk.dp.has_value() || jwk.dq.has_value() || jwk.qi.has_value()) meets_requirements |= jwk.p.has_value() && jwk.q.has_value() && jwk.dp.has_value() && jwk.dq.has_value() && jwk.qi.has_value(); if (jwk.oth.has_value()) { // FIXME: We don't support > 2 primes in RSA keys meets_requirements = false; } if (!meets_requirements) return WebIDL::DataError::create(m_realm, "Invalid JWK private key"_fly_string); // FIXME: Spec error, it should say 'the RSA private key identified by interpreting jwk according to section 6.3.2' // 2. Let privateKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA]. auto private_key = TRY(parse_jwk_rsa_private_key(realm, jwk)); // FIXME: Spec error, it should say 'not to be a valid RSA private key' // 3. If privateKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError. // FIXME: Validate the private key // 4. Let key be a new CryptoKey representing privateKey. key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key }); // 5. Set the [[type]] internal slot of key to "private" key->set_type(Bindings::KeyType::Private); } // -> Otherwise: else { // 1. If jwk does not meet the requirements of Section 6.3.1 of JSON Web Algorithms [JWA], then throw a DataError. if (!jwk.e.has_value() || !jwk.n.has_value()) return WebIDL::DataError::create(m_realm, "Invalid JWK public key"_fly_string); // 2. Let publicKey represent the RSA public key identified by interpreting jwk according to Section 6.3.1 of JSON Web Algorithms [JWA]. auto public_key = TRY(parse_jwk_rsa_public_key(realm, jwk)); // 3. If publicKey can be determined to not be a valid RSA public key according to [RFC3447], then throw a DataError. // FIXME: Validate the public key // 4. Let key be a new CryptoKey representing publicKey. key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key }); // 5. Set the [[type]] internal slot of key to "public" key->set_type(Bindings::KeyType::Public); } } // -> Otherwise: throw a NotSupportedError. else { return WebIDL::NotSupportedError::create(m_realm, "Unsupported key format"_fly_string); } // 3. Let algorithm be a new RsaHashedKeyAlgorithm. auto algorithm = RsaHashedKeyAlgorithm::create(m_realm); // 4. Set the name attribute of algorithm to "RSA-OAEP" algorithm->set_name("RSA-OAEP"_string); // 5. Set the modulusLength attribute of algorithm to the length, in bits, of the RSA public modulus. // 6. Set the publicExponent attribute of algorithm to the BigInteger representation of the RSA public exponent. TRY(key->handle().visit( [&](::Crypto::PK::RSAPublicKey<> const& public_key) -> WebIDL::ExceptionOr { algorithm->set_modulus_length(public_key.length()); TRY(algorithm->set_public_exponent(public_key.public_exponent())); return {}; }, [&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> WebIDL::ExceptionOr { algorithm->set_modulus_length(private_key.length()); TRY(algorithm->set_public_exponent(private_key.public_exponent())); return {}; }, [](auto) -> WebIDL::ExceptionOr { VERIFY_NOT_REACHED(); })); // 7. Set the hash attribute of algorithm to the hash member of normalizedAlgorithm. algorithm->set_hash(normalized_algorithm.hash); // 8. Set the [[algorithm]] internal slot of key to algorithm key->set_algorithm(algorithm); // 9. Return key. return JS::NonnullGCPtr { *key }; } // https://w3c.github.io/webcrypto/#rsa-oaep-operations WebIDL::ExceptionOr> RSAOAEP::export_key(Bindings::KeyFormat format, JS::NonnullGCPtr key) { auto& realm = m_realm; auto& vm = realm.vm(); // 1. Let key be the key to be exported. // 2. If the underlying cryptographic key material represented by the [[handle]] internal slot of key cannot be accessed, then throw an OperationError. // Note: In our impl this is always accessible auto const& handle = key->handle(); JS::GCPtr result = nullptr; // 3. If format is "spki" if (format == Bindings::KeyFormat::Spki) { // 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Public) return WebIDL::InvalidAccessError::create(realm, "Key is not public"_fly_string); // FIXME: 2. Let data be an instance of the subjectPublicKeyInfo ASN.1 structure defined in [RFC5280] with the following properties: // - Set the algorithm field to an AlgorithmIdentifier ASN.1 type with the following properties: // - Set the algorithm field to the OID rsaEncryption defined in [RFC3447]. // - Set the params field to the ASN.1 type NULL. // - Set the subjectPublicKey field to the result of DER-encoding an RSAPublicKey ASN.1 type, as defined in [RFC3447], Appendix A.1.1, // that represents the RSA public key represented by the [[handle]] internal slot of key // FIXME: 3. Let result be the result of creating an ArrayBuffer containing data. result = JS::ArrayBuffer::create(realm, TRY_OR_THROW_OOM(vm, ByteBuffer::copy(("FIXME"sv).bytes()))); } // FIXME: If format is "pkcs8" // If format is "jwk" else if (format == Bindings::KeyFormat::Jwk) { // 1. Let jwk be a new JsonWebKey dictionary. Bindings::JsonWebKey jwk = {}; // 2. Set the kty attribute of jwk to the string "RSA". jwk.kty = "RSA"_string; // 4. Let hash be the name attribute of the hash attribute of the [[algorithm]] internal slot of key. auto hash = TRY(verify_cast(*key->algorithm()).hash().visit([](String const& name) -> JS::ThrowCompletionOr { return name; }, [&](JS::Handle const& obj) -> JS::ThrowCompletionOr { auto name_property = TRY(obj->get("name")); return name_property.to_string(realm.vm()); })); // 4. If hash is "SHA-1": // - Set the alg attribute of jwk to the string "RSA-OAEP". if (hash == "SHA-1"sv) { jwk.alg = "RSA-OAEP"_string; } // If hash is "SHA-256": // - Set the alg attribute of jwk to the string "RSA-OAEP-256". else if (hash == "SHA-256"sv) { jwk.alg = "RSA-OAEP-256"_string; } // If hash is "SHA-384": // - Set the alg attribute of jwk to the string "RSA-OAEP-384". else if (hash == "SHA-384"sv) { jwk.alg = "RSA-OAEP-384"_string; } // If hash is "SHA-512": // - Set the alg attribute of jwk to the string "RSA-OAEP-512". else if (hash == "SHA-512"sv) { jwk.alg = "RSA-OAEP-512"_string; } else { // FIXME: Support 'other applicable specifications' // - Perform any key export steps defined by other applicable specifications, // passing format and the hash attribute of the [[algorithm]] internal slot of key and obtaining alg. // - Set the alg attribute of jwk to alg. return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Unsupported hash algorithm '{}'", hash))); } // 10. Set the attributes n and e of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.1. auto maybe_error = handle.visit( [&](::Crypto::PK::RSAPublicKey<> const& public_key) -> ErrorOr { jwk.n = TRY(base64_url_uint_encode(public_key.modulus())); jwk.e = TRY(base64_url_uint_encode(public_key.public_exponent())); return {}; }, [&](::Crypto::PK::RSAPrivateKey<> const& private_key) -> ErrorOr { jwk.n = TRY(base64_url_uint_encode(private_key.modulus())); jwk.e = TRY(base64_url_uint_encode(private_key.public_exponent())); // 11. If the [[type]] internal slot of key is "private": // 1. Set the attributes named d, p, q, dp, dq, and qi of jwk according to the corresponding definitions in JSON Web Algorithms [JWA], Section 6.3.2. jwk.d = TRY(base64_url_uint_encode(private_key.private_exponent())); jwk.p = TRY(base64_url_uint_encode(private_key.prime1())); jwk.q = TRY(base64_url_uint_encode(private_key.prime2())); jwk.dp = TRY(base64_url_uint_encode(private_key.exponent1())); jwk.dq = TRY(base64_url_uint_encode(private_key.exponent2())); jwk.qi = TRY(base64_url_uint_encode(private_key.coefficient())); // 12. If the underlying RSA private key represented by the [[handle]] internal slot of key is represented by more than two primes, // set the attribute named oth of jwk according to the corresponding definition in JSON Web Algorithms [JWA], Section 6.3.2.7 // FIXME: We don't support more than 2 primes on RSA keys return {}; }, [](auto) -> ErrorOr { VERIFY_NOT_REACHED(); }); // FIXME: clang-format butchers the visit if we do the TRY inline TRY_OR_THROW_OOM(vm, maybe_error); // 13. Set the key_ops attribute of jwk to the usages attribute of key. jwk.key_ops = Vector {}; jwk.key_ops->ensure_capacity(key->internal_usages().size()); for (auto const& usage : key->internal_usages()) { jwk.key_ops->append(Bindings::idl_enum_to_string(usage)); } // 14. Set the ext attribute of jwk to the [[extractable]] internal slot of key. jwk.ext = key->extractable(); // 15. Let result be the result of converting jwk to an ECMAScript Object, as defined by [WebIDL]. result = TRY(jwk.to_object(realm)); } // Otherwise throw a NotSupportedError. else { return WebIDL::NotSupportedError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted("Exporting to format {} is not supported", Bindings::idl_enum_to_string(format)))); } // 8. Return result return JS::NonnullGCPtr { *result }; } WebIDL::ExceptionOr> PBKDF2::import_key(AlgorithmParams const&, Bindings::KeyFormat format, CryptoKey::InternalKeyData key_data, bool extractable, Vector const& key_usages) { // 1. If format is not "raw", throw a NotSupportedError if (format != Bindings::KeyFormat::Raw) { return WebIDL::NotSupportedError::create(m_realm, "Only raw format is supported"_fly_string); } // 2. If usages contains a value that is not "deriveKey" or "deriveBits", then throw a SyntaxError. for (auto& usage : key_usages) { if (usage != Bindings::KeyUsage::Derivekey && usage != Bindings::KeyUsage::Derivebits) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } // 3. If extractable is not false, then throw a SyntaxError. if (extractable) return WebIDL::SyntaxError::create(m_realm, "extractable must be false"_fly_string); // 4. Let key be a new CryptoKey representing keyData. auto key = CryptoKey::create(m_realm, move(key_data)); // 5. Set the [[type]] internal slot of key to "secret". key->set_type(Bindings::KeyType::Secret); // 6. Set the [[extractable]] internal slot of key to false. key->set_extractable(false); // 7. Let algorithm be a new KeyAlgorithm object. auto algorithm = KeyAlgorithm::create(m_realm); // 8. Set the name attribute of algorithm to "PBKDF2". algorithm->set_name("PBKDF2"_string); // 9. Set the [[algorithm]] internal slot of key to algorithm. key->set_algorithm(algorithm); // 10. Return key. return key; } WebIDL::ExceptionOr> SHA::digest(AlgorithmParams const& algorithm, ByteBuffer const& data) { auto& algorithm_name = algorithm.name; ::Crypto::Hash::HashKind hash_kind; if (algorithm_name.equals_ignoring_ascii_case("SHA-1"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA1; } else if (algorithm_name.equals_ignoring_ascii_case("SHA-256"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA256; } else if (algorithm_name.equals_ignoring_ascii_case("SHA-384"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA384; } else if (algorithm_name.equals_ignoring_ascii_case("SHA-512"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA512; } else { return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", algorithm_name))); } ::Crypto::Hash::Manager hash { hash_kind }; hash.update(data); auto digest = hash.digest(); auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size()); if (result_buffer.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_fly_string); return JS::ArrayBuffer::create(m_realm, result_buffer.release_value()); } // https://w3c.github.io/webcrypto/#ecdsa-operations WebIDL::ExceptionOr, JS::NonnullGCPtr>> ECDSA::generate_key(AlgorithmParams const& params, bool extractable, Vector const& key_usages) { // 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError. for (auto const& usage : key_usages) { if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } auto const& normalized_algorithm = static_cast(params); // 2. If the namedCurve member of normalizedAlgorithm is "P-256", "P-384" or "P-521": // Generate an Elliptic Curve key pair, as defined in [RFC6090] // with domain parameters for the curve identified by the namedCurve member of normalizedAlgorithm. Variant curve; if (normalized_algorithm.named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) { if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-256"sv)) curve = ::Crypto::Curves::SECP256r1 {}; if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-384"sv)) curve = ::Crypto::Curves::SECP384r1 {}; // FIXME: Support P-521 if (normalized_algorithm.named_curve.equals_ignoring_ascii_case("P-521"sv)) return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_fly_string); } else { // If the namedCurve member of normalizedAlgorithm is a value specified in an applicable specification: // Perform the ECDSA generation steps specified in that specification, // passing in normalizedAlgorithm and resulting in an elliptic curve key pair. // Otherwise: throw a NotSupportedError return WebIDL::NotSupportedError::create(m_realm, "Only 'P-256', 'P-384' and 'P-521' is supported"_fly_string); } // NOTE: Spec jumps to 6 here for some reason // 6. If performing the key generation operation results in an error, then throw an OperationError. auto maybe_private_key_data = curve.visit( [](Empty const&) -> ErrorOr { return Error::from_string_view("noop error"sv); }, [](auto instance) { return instance.generate_private_key(); }); if (maybe_private_key_data.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_fly_string); auto private_key_data = maybe_private_key_data.release_value(); auto maybe_public_key_data = curve.visit( [](Empty const&) -> ErrorOr { return Error::from_string_view("noop error"sv); }, [&](auto instance) { return instance.generate_public_key(private_key_data); }); if (maybe_public_key_data.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to create valid crypto instance"_fly_string); auto public_key_data = maybe_public_key_data.release_value(); // 7. Let algorithm be a new EcKeyAlgorithm object. auto algorithm = EcKeyAlgorithm::create(m_realm); // 8. Set the name attribute of algorithm to "ECDSA". algorithm->set_name("ECDSA"_string); // 9. Set the namedCurve attribute of algorithm to equal the namedCurve member of normalizedAlgorithm. algorithm->set_named_curve(normalized_algorithm.named_curve); // 10. Let publicKey be a new CryptoKey representing the public key of the generated key pair. auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data }); // 11. Set the [[type]] internal slot of publicKey to "public" public_key->set_type(Bindings::KeyType::Public); // 12. Set the [[algorithm]] internal slot of publicKey to algorithm. public_key->set_algorithm(algorithm); // 13. Set the [[extractable]] internal slot of publicKey to true. public_key->set_extractable(true); // 14. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ]. public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } })); // 15. Let privateKey be a new CryptoKey representing the private key of the generated key pair. auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data }); // 16. Set the [[type]] internal slot of privateKey to "private" private_key->set_type(Bindings::KeyType::Private); // 17. Set the [[algorithm]] internal slot of privateKey to algorithm. private_key->set_algorithm(algorithm); // 18. Set the [[extractable]] internal slot of privateKey to extractable. private_key->set_extractable(extractable); // 19. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ]. private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } })); // 20. Let result be a new CryptoKeyPair dictionary. // 21. Set the publicKey attribute of result to be publicKey. // 22. Set the privateKey attribute of result to be privateKey. // 23. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL]. return Variant, JS::NonnullGCPtr> { CryptoKeyPair::create(m_realm, public_key, private_key) }; } // https://w3c.github.io/webcrypto/#ecdsa-operations WebIDL::ExceptionOr> ECDSA::sign(AlgorithmParams const& params, JS::NonnullGCPtr key, ByteBuffer const& message) { auto& realm = m_realm; auto& vm = realm.vm(); auto const& normalized_algorithm = static_cast(params); (void)vm; (void)message; // 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Private) return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string); // 2. Let hashAlgorithm be the hash member of normalizedAlgorithm. [[maybe_unused]] auto const& hash_algorithm = normalized_algorithm.hash; // NOTE: We dont have sign() on the SECPxxxr1 curves, so we can't implement this yet // FIXME: 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message. // FIXME: 4. Let d be the ECDSA private key associated with key. // FIXME: 5. Let params be the EC domain parameters associated with key. // FIXME: 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521": // FIXME: 1. Perform the ECDSA signing process, as specified in [RFC6090], Section 5.4, with M as the message, using params as the EC domain parameters, and with d as the private key. // FIXME: 2. Let r and s be the pair of integers resulting from performing the ECDSA signing process. // FIXME: 3. Let result be an empty byte sequence. // FIXME: 4. Let n be the smallest integer such that n * 8 is greater than the logarithm to base 2 of the order of the base point of the elliptic curve identified by params. // FIXME: 5. Convert r to an octet string of length n and append this sequence of bytes to result. // FIXME: 6. Convert s to an octet string of length n and append this sequence of bytes to result. // FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification: // FIXME: Perform the ECDSA signature steps specified in that specification, passing in M, params and d and resulting in result. // NOTE: The spec jumps to 9 here for some reason // FIXME: 9. Return the result of creating an ArrayBuffer containing result. return WebIDL::NotSupportedError::create(realm, "ECDSA signing is not supported yet"_fly_string); } // https://w3c.github.io/webcrypto/#ecdsa-operations WebIDL::ExceptionOr ECDSA::verify(AlgorithmParams const& params, JS::NonnullGCPtr key, ByteBuffer const& signature, ByteBuffer const& message) { auto& realm = m_realm; auto const& normalized_algorithm = static_cast(params); // 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Public) return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string); // 2. Let hashAlgorithm be the hash member of normalizedAlgorithm. [[maybe_unused]] auto const& hash_algorithm = TRY(normalized_algorithm.hash.visit( [](String const& name) -> JS::ThrowCompletionOr { return name; }, [&](JS::Handle const& obj) -> JS::ThrowCompletionOr { auto name_property = TRY(obj->get("name")); return name_property.to_string(m_realm.vm()); })); // 3. Let M be the result of performing the digest operation specified by hashAlgorithm using message. ::Crypto::Hash::HashKind hash_kind; if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA1; } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA256; } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA384; } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) { hash_kind = ::Crypto::Hash::HashKind::SHA512; } else { return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm))); } ::Crypto::Hash::Manager hash { hash_kind }; hash.update(message); auto digest = hash.digest(); auto result_buffer = ByteBuffer::copy(digest.immutable_data(), hash.digest_size()); if (result_buffer.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to create result buffer"_fly_string); auto M = result_buffer.release_value(); // 4. Let Q be the ECDSA public key associated with key. auto Q = key->handle().visit( [](ByteBuffer data) -> ByteBuffer { return data; }, [](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); }); // FIXME: 5. Let params be the EC domain parameters associated with key. // 6. If the namedCurve attribute of the [[algorithm]] internal slot of key is "P-256", "P-384" or "P-521": auto const& internal_algorithm = static_cast(*key->algorithm()); auto const& named_curve = internal_algorithm.named_curve(); auto result = false; Variant curve; if (named_curve.is_one_of("P-256"sv, "P-384"sv, "P-521"sv)) { if (named_curve.equals_ignoring_ascii_case("P-256"sv)) curve = ::Crypto::Curves::SECP256r1 {}; if (named_curve.equals_ignoring_ascii_case("P-384"sv)) curve = ::Crypto::Curves::SECP384r1 {}; // FIXME: Support P-521 if (named_curve.equals_ignoring_ascii_case("P-521"sv)) return WebIDL::NotSupportedError::create(m_realm, "'P-521' is not supported yet"_fly_string); // Perform the ECDSA verifying process, as specified in [RFC6090], Section 5.3, // with M as the received message, // signature as the received signature // and using params as the EC domain parameters, // and Q as the public key. // NOTE: verify() takes the signature in X.509 format but JS uses IEEE P1363 format, so we need to convert it // FIXME: Dont construct an ASN1 object here just to pass it to verify auto half_size = signature.size() / 2; auto r = ::Crypto::UnsignedBigInteger::import_data(signature.data(), half_size); auto s = ::Crypto::UnsignedBigInteger::import_data(signature.data() + half_size, half_size); ::Crypto::ASN1::Encoder encoder; (void)encoder.write_constructed(::Crypto::ASN1::Class::Universal, ::Crypto::ASN1::Kind::Sequence, [&] { (void)encoder.write(r); (void)encoder.write(s); }); auto encoded_signature = encoder.finish(); auto maybe_result = curve.visit( [](Empty const&) -> ErrorOr { return Error::from_string_view("Failed to create valid crypto instance"sv); }, [&](auto instance) { return instance.verify(M, Q, encoded_signature); }); if (maybe_result.is_error()) { auto error_message = MUST(FlyString::from_utf8(maybe_result.error().string_literal())); return WebIDL::OperationError::create(m_realm, error_message); } result = maybe_result.release_value(); } else { // FIXME: Otherwise, the namedCurve attribute of the [[algorithm]] internal slot of key is a value specified in an applicable specification: // FIXME: Perform the ECDSA verification steps specified in that specification passing in M, signature, params and Q and resulting in an indication of whether or not the purported signature is valid. } // 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise. // 10. Return result. return JS::Value(result); } // https://wicg.github.io/webcrypto-secure-curves/#ed25519-operations WebIDL::ExceptionOr, JS::NonnullGCPtr>> ED25519::generate_key([[maybe_unused]] AlgorithmParams const& params, bool extractable, Vector const& key_usages) { // 1. If usages contains a value which is not one of "sign" or "verify", then throw a SyntaxError. for (auto const& usage : key_usages) { if (usage != Bindings::KeyUsage::Sign && usage != Bindings::KeyUsage::Verify) { return WebIDL::SyntaxError::create(m_realm, MUST(String::formatted("Invalid key usage '{}'", idl_enum_to_string(usage)))); } } // 2. Generate an Ed25519 key pair, as defined in [RFC8032], section 5.1.5. ::Crypto::Curves::Ed25519 curve; auto maybe_private_key = curve.generate_private_key(); if (maybe_private_key.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to generate private key"_fly_string); auto private_key_data = maybe_private_key.release_value(); auto maybe_public_key = curve.generate_public_key(private_key_data); if (maybe_public_key.is_error()) return WebIDL::OperationError::create(m_realm, "Failed to generate public key"_fly_string); auto public_key_data = maybe_public_key.release_value(); // 3. Let algorithm be a new KeyAlgorithm object. auto algorithm = KeyAlgorithm::create(m_realm); // 4. Set the name attribute of algorithm to "Ed25519". algorithm->set_name("Ed25519"_string); // 5. Let publicKey be a new CryptoKey associated with the relevant global object of this [HTML], // and representing the public key of the generated key pair. auto public_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { public_key_data }); // 6. Set the [[type]] internal slot of publicKey to "public" public_key->set_type(Bindings::KeyType::Public); // 7. Set the [[algorithm]] internal slot of publicKey to algorithm. public_key->set_algorithm(algorithm); // 8. Set the [[extractable]] internal slot of publicKey to true. public_key->set_extractable(true); // 9. Set the [[usages]] internal slot of publicKey to be the usage intersection of usages and [ "verify" ]. public_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Verify } })); // 10. Let privateKey be a new CryptoKey associated with the relevant global object of this [HTML], // and representing the private key of the generated key pair. auto private_key = CryptoKey::create(m_realm, CryptoKey::InternalKeyData { private_key_data }); // 11. Set the [[type]] internal slot of privateKey to "private" private_key->set_type(Bindings::KeyType::Private); // 12. Set the [[algorithm]] internal slot of privateKey to algorithm. private_key->set_algorithm(algorithm); // 13. Set the [[extractable]] internal slot of privateKey to extractable. private_key->set_extractable(extractable); // 14. Set the [[usages]] internal slot of privateKey to be the usage intersection of usages and [ "sign" ]. private_key->set_usages(usage_intersection(key_usages, { { Bindings::KeyUsage::Sign } })); // 15. Let result be a new CryptoKeyPair dictionary. // 16. Set the publicKey attribute of result to be publicKey. // 17. Set the privateKey attribute of result to be privateKey. // 18. Return the result of converting result to an ECMAScript Object, as defined by [WebIDL]. return Variant, JS::NonnullGCPtr> { CryptoKeyPair::create(m_realm, public_key, private_key) }; } WebIDL::ExceptionOr> ED25519::sign([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr key, ByteBuffer const& message) { auto& realm = m_realm; auto& vm = realm.vm(); // 1. If the [[type]] internal slot of key is not "private", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Private) return WebIDL::InvalidAccessError::create(realm, "Key is not a private key"_fly_string); // 2. Perform the Ed25519 signing process, as specified in [RFC8032], Section 5.1.6, // with message as M, using the Ed25519 private key associated with key. auto private_key = key->handle().visit( [](ByteBuffer data) -> ByteBuffer { return data; }, [](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); }); ::Crypto::Curves::Ed25519 curve; auto maybe_public_key = curve.generate_public_key(private_key); if (maybe_public_key.is_error()) return WebIDL::OperationError::create(realm, "Failed to generate public key"_fly_string); auto public_key = maybe_public_key.release_value(); auto maybe_signature = curve.sign(public_key, private_key, message); if (maybe_signature.is_error()) return WebIDL::OperationError::create(realm, "Failed to sign message"_fly_string); auto signature = maybe_signature.release_value(); // 3. Return a new ArrayBuffer associated with the relevant global object of this [HTML], // and containing the bytes of the signature resulting from performing the Ed25519 signing process. auto result = TRY_OR_THROW_OOM(vm, ByteBuffer::copy(signature)); return JS::ArrayBuffer::create(realm, move(result)); } WebIDL::ExceptionOr ED25519::verify([[maybe_unused]] AlgorithmParams const& params, JS::NonnullGCPtr key, ByteBuffer const& signature, ByteBuffer const& message) { auto& realm = m_realm; // 1. If the [[type]] internal slot of key is not "public", then throw an InvalidAccessError. if (key->type() != Bindings::KeyType::Public) return WebIDL::InvalidAccessError::create(realm, "Key is not a public key"_fly_string); // NOTE: this is checked by ED25519::verify() // 2. If the key data of key represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false. // 3. If the point R, encoded in the first half of signature, represents an invalid point or a small-order element on the Elliptic Curve of Ed25519, return false. // 4. Perform the Ed25519 verification steps, as specified in [RFC8032], Section 5.1.7, // using the cofactorless (unbatched) equation, [S]B = R + [k]A', on the signature, // with message as M, using the Ed25519 public key associated with key. auto public_key = key->handle().visit( [](ByteBuffer data) -> ByteBuffer { return data; }, [](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); }); // 9. Let result be a boolean with the value true if the signature is valid and the value false otherwise. ::Crypto::Curves::Ed25519 curve; auto result = curve.verify(public_key, signature, message); // 10. Return result. return JS::Value(result); } WebIDL::ExceptionOr> PBKDF2::derive_bits(AlgorithmParams const& params, JS::NonnullGCPtr key, u32 length) { auto& realm = m_realm; auto const& normalized_algorithm = static_cast(params); // 1. If length is null or zero, or is not a multiple of 8, then throw an OperationError. if (length == 0 || length % 8 != 0) return WebIDL::OperationError::create(realm, "Length must be greater than 0 and divisible by 8"_fly_string); // 2. If the iterations member of normalizedAlgorithm is zero, then throw an OperationError. if (normalized_algorithm.iterations == 0) return WebIDL::OperationError::create(realm, "Iterations must be greater than 0"_fly_string); // 3. Let prf be the MAC Generation function described in Section 4 of [FIPS-198-1] using the hash function described by the hash member of normalizedAlgorithm. auto const& hash_algorithm = TRY(normalized_algorithm.hash.visit( [](String const& name) -> JS::ThrowCompletionOr { return name; }, [&](JS::Handle const& obj) -> JS::ThrowCompletionOr { auto name_property = TRY(obj->get("name")); return name_property.to_string(m_realm.vm()); })); // 4. Let result be the result of performing the PBKDF2 operation defined in Section 5.2 of [RFC8018] // using prf as the pseudo-random function, PRF, // the password represented by [[handle]] internal slot of key as the password, P, // the contents of the salt attribute of normalizedAlgorithm as the salt, S, // the value of the iterations attribute of normalizedAlgorithm as the iteration count, c, // and length divided by 8 as the intended key length, dkLen. ErrorOr result = Error::from_string_view("noop error"sv); auto password = key->handle().visit( [](ByteBuffer data) -> ByteBuffer { return data; }, [](auto) -> ByteBuffer { VERIFY_NOT_REACHED(); }); auto salt = normalized_algorithm.salt; auto iterations = normalized_algorithm.iterations; auto derived_key_length_bytes = length / 8; if (hash_algorithm.equals_ignoring_ascii_case("SHA-1"sv)) { result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA1>>(password, salt, iterations, derived_key_length_bytes); } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-256"sv)) { result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA256>>(password, salt, iterations, derived_key_length_bytes); } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-384"sv)) { result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA384>>(password, salt, iterations, derived_key_length_bytes); } else if (hash_algorithm.equals_ignoring_ascii_case("SHA-512"sv)) { result = ::Crypto::Hash::PBKDF2::derive_key<::Crypto::Authentication::HMAC<::Crypto::Hash::SHA512>>(password, salt, iterations, derived_key_length_bytes); } else { return WebIDL::NotSupportedError::create(m_realm, MUST(String::formatted("Invalid hash function '{}'", hash_algorithm))); } // 5. If the key derivation operation fails, then throw an OperationError. if (result.is_error()) return WebIDL::OperationError::create(realm, "Failed to derive key"_fly_string); // 6. Return result return JS::ArrayBuffer::create(realm, result.release_value()); } WebIDL::ExceptionOr PBKDF2::get_key_length(AlgorithmParams const&) { // 1. Return null. return JS::js_null(); } }