/* * Copyright (c) 2021-2024, Andreas Kling * Copyright (c) 2021, Tobias Christiansen * * SPDX-License-Identifier: BSD-2-Clause */ #include "InlineFormattingContext.h" #include #include #include #include #include #include #include #include #include #include namespace Web::Layout { // NOTE: We use a custom clamping function here instead of AK::clamp(), since the AK version // will VERIFY(max >= min) and CSS explicitly allows that (see css-values-4.) template [[nodiscard]] constexpr T css_clamp(T const& value, T const& min, T const& max) { return ::max(min, ::min(value, max)); } CSSPixels FlexFormattingContext::get_pixel_width(Box const& box, CSS::Size const& size) const { return calculate_inner_width(box, containing_block_width_as_available_size(box), size); } CSSPixels FlexFormattingContext::get_pixel_height(Box const& box, CSS::Size const& size) const { return calculate_inner_height(box, containing_block_height_as_available_size(box), size); } FlexFormattingContext::FlexFormattingContext(LayoutState& state, Box const& flex_container, FormattingContext* parent) : FormattingContext(Type::Flex, state, flex_container, parent) , m_flex_container_state(m_state.get_mutable(flex_container)) , m_flex_direction(flex_container.computed_values().flex_direction()) { } FlexFormattingContext::~FlexFormattingContext() = default; CSSPixels FlexFormattingContext::automatic_content_width() const { return m_flex_container_state.content_width(); } CSSPixels FlexFormattingContext::automatic_content_height() const { return m_flex_container_state.content_height(); } void FlexFormattingContext::run(Box const& run_box, LayoutMode, AvailableSpace const& available_space) { VERIFY(&run_box == &flex_container()); // This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm // 1. Generate anonymous flex items generate_anonymous_flex_items(); // 2. Determine the available main and cross space for the flex items determine_available_space_for_items(available_space); { // https://drafts.csswg.org/css-flexbox-1/#definite-sizes // 3. If a single-line flex container has a definite cross size, // the automatic preferred outer cross size of any stretched flex items is the flex container’s inner cross size // (clamped to the flex item’s min and max cross size) and is considered definite. if (is_single_line() && has_definite_cross_size(m_flex_container_state)) { auto flex_container_inner_cross_size = inner_cross_size(m_flex_container_state); for (auto& item : m_flex_items) { if (!flex_item_is_stretched(item)) continue; auto item_min_cross_size = has_cross_min_size(item.box) ? specified_cross_min_size(item.box) : 0; auto item_max_cross_size = has_cross_max_size(item.box) ? specified_cross_max_size(item.box) : CSSPixels::max(); auto item_preferred_outer_cross_size = css_clamp(flex_container_inner_cross_size, item_min_cross_size, item_max_cross_size); auto item_inner_cross_size = item_preferred_outer_cross_size - item.margins.cross_before - item.margins.cross_after - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after; set_cross_size(item.box, item_inner_cross_size); set_has_definite_cross_size(item); } } } // 3. Determine the flex base size and hypothetical main size of each item for (auto& item : m_flex_items) { if (item.box->is_replaced_box()) { // FIXME: Get rid of prepare_for_replaced_layout() and make replaced elements figure out their intrinsic size lazily. static_cast(*item.box).prepare_for_replaced_layout(); } determine_flex_base_size_and_hypothetical_main_size(item); } if (available_space.width.is_intrinsic_sizing_constraint() || available_space.height.is_intrinsic_sizing_constraint()) { // We're computing intrinsic size for the flex container. This happens at the end of run(). } else { // 4. Determine the main size of the flex container // Determine the main size of the flex container using the rules of the formatting context in which it participates. // NOTE: The automatic block size of a block-level flex container is its max-content size. // NOTE: We've already handled this in the parent formatting context. // Specifically, all formatting contexts will have assigned width & height to the flex container // before this formatting context runs. } // 5. Collect flex items into flex lines: // After this step no additional items are to be added to flex_lines or any of its items! collect_flex_items_into_flex_lines(); // 6. Resolve the flexible lengths resolve_flexible_lengths(); // Cross Size Determination // 7. Determine the hypothetical cross size of each item for (auto& item : m_flex_items) { determine_hypothetical_cross_size_of_item(item, false); } // 8. Calculate the cross size of each flex line. calculate_cross_size_of_each_flex_line(); // 9. Handle 'align-content: stretch'. handle_align_content_stretch(); // 10. Collapse visibility:collapse items. // FIXME: This // 11. Determine the used cross size of each flex item. determine_used_cross_size_of_each_flex_item(); // 12. Distribute any remaining free space. distribute_any_remaining_free_space(); // 13. Resolve cross-axis auto margins. resolve_cross_axis_auto_margins(); // 14. Align all flex items along the cross-axis align_all_flex_items_along_the_cross_axis(); // 15. Determine the flex container’s used cross size // NOTE: This is handled by the parent formatting context. { // https://drafts.csswg.org/css-flexbox-1/#definite-sizes // 4. Once the cross size of a flex line has been determined, // the cross sizes of items in auto-sized flex containers are also considered definite for the purpose of layout. auto const& flex_container_computed_cross_size = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width(); if (flex_container_computed_cross_size.is_auto()) { for (auto& item : m_flex_items) { set_cross_size(item.box, item.cross_size.value()); set_has_definite_cross_size(item); } } } { // NOTE: We re-resolve cross sizes here, now that we can resolve percentages. // 7. Determine the hypothetical cross size of each item for (auto& item : m_flex_items) { determine_hypothetical_cross_size_of_item(item, true); } // 11. Determine the used cross size of each flex item. determine_used_cross_size_of_each_flex_item(); } // 16. Align all flex lines (per align-content) align_all_flex_lines(); if (available_space.width.is_intrinsic_sizing_constraint() || available_space.height.is_intrinsic_sizing_constraint()) { // We're computing intrinsic size for the flex container. determine_intrinsic_size_of_flex_container(); } else { // This is a normal layout (not intrinsic sizing). // AD-HOC: Finally, layout the inside of all flex items. copy_dimensions_from_flex_items_to_boxes(); for (auto& item : m_flex_items) { if (auto independent_formatting_context = layout_inside(item.box, LayoutMode::Normal, item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space))) independent_formatting_context->parent_context_did_dimension_child_root_box(); compute_inset(item.box); } } } void FlexFormattingContext::parent_context_did_dimension_child_root_box() { flex_container().for_each_child_of_type([&](Layout::Box& box) { if (box.is_absolutely_positioned()) { auto& cb_state = m_state.get(*box.containing_block()); auto available_width = AvailableSize::make_definite(cb_state.content_width() + cb_state.padding_left + cb_state.padding_right); auto available_height = AvailableSize::make_definite(cb_state.content_height() + cb_state.padding_top + cb_state.padding_bottom); layout_absolutely_positioned_element(box, AvailableSpace(available_width, available_height)); } return IterationDecision::Continue; }); } void FlexFormattingContext::populate_specified_margins(FlexItem& item, CSS::FlexDirection flex_direction) const { auto width_of_containing_block = m_flex_container_state.content_width(); // FIXME: This should also take reverse-ness into account if (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse) { item.borders.main_before = item.box->computed_values().border_left().width; item.borders.main_after = item.box->computed_values().border_right().width; item.borders.cross_before = item.box->computed_values().border_top().width; item.borders.cross_after = item.box->computed_values().border_bottom().width; item.padding.main_before = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block); item.padding.main_after = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block); item.padding.cross_before = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block); item.padding.cross_after = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block); item.margins.main_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block); item.margins.main_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block); item.margins.cross_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block); item.margins.cross_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block); item.margins.main_before_is_auto = item.box->computed_values().margin().left().is_auto(); item.margins.main_after_is_auto = item.box->computed_values().margin().right().is_auto(); item.margins.cross_before_is_auto = item.box->computed_values().margin().top().is_auto(); item.margins.cross_after_is_auto = item.box->computed_values().margin().bottom().is_auto(); } else { item.borders.main_before = item.box->computed_values().border_top().width; item.borders.main_after = item.box->computed_values().border_bottom().width; item.borders.cross_before = item.box->computed_values().border_left().width; item.borders.cross_after = item.box->computed_values().border_right().width; item.padding.main_before = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block); item.padding.main_after = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block); item.padding.cross_before = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block); item.padding.cross_after = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block); item.margins.main_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block); item.margins.main_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block); item.margins.cross_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block); item.margins.cross_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block); item.margins.main_before_is_auto = item.box->computed_values().margin().top().is_auto(); item.margins.main_after_is_auto = item.box->computed_values().margin().bottom().is_auto(); item.margins.cross_before_is_auto = item.box->computed_values().margin().left().is_auto(); item.margins.cross_after_is_auto = item.box->computed_values().margin().right().is_auto(); } } // https://www.w3.org/TR/css-flexbox-1/#flex-items void FlexFormattingContext::generate_anonymous_flex_items() { // More like, sift through the already generated items. // After this step no items are to be added or removed from flex_items! // It holds every item we need to consider and there should be nothing in the following // calculations that could change that. // This is particularly important since we take references to the items stored in flex_items // later, whose addresses won't be stable if we added or removed any items. HashMap> order_item_bucket; flex_container().for_each_child_of_type([&](Box& child_box) { if (can_skip_is_anonymous_text_run(child_box)) return IterationDecision::Continue; // Skip any "out-of-flow" children if (child_box.is_out_of_flow(*this)) return IterationDecision::Continue; child_box.set_flex_item(true); FlexItem item = { child_box, m_state.get_mutable(child_box) }; populate_specified_margins(item, m_flex_direction); auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order()); order_bucket.append(move(item)); return IterationDecision::Continue; }); auto keys = order_item_bucket.keys(); if (is_direction_reverse()) { quick_sort(keys, [](auto& a, auto& b) { return a > b; }); } else { quick_sort(keys, [](auto& a, auto& b) { return a < b; }); } for (auto key : keys) { auto order_bucket = order_item_bucket.get(key); if (order_bucket.has_value()) { auto& items = order_bucket.value(); if (is_direction_reverse()) { for (auto item : items.in_reverse()) { m_flex_items.append(move(item)); } } else { for (auto item : items) { m_flex_items.append(move(item)); } } } } } bool FlexFormattingContext::has_definite_main_size(LayoutState::UsedValues const& used_values) const { return is_row_layout() ? used_values.has_definite_width() : used_values.has_definite_height(); } CSSPixels FlexFormattingContext::inner_main_size(LayoutState::UsedValues const& used_values) const { return is_row_layout() ? used_values.content_width() : used_values.content_height(); } CSSPixels FlexFormattingContext::inner_cross_size(LayoutState::UsedValues const& used_values) const { return is_row_layout() ? used_values.content_height() : used_values.content_width(); } bool FlexFormattingContext::has_main_min_size(Box const& box) const { auto const& value = is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); return !value.is_auto(); } bool FlexFormattingContext::has_cross_min_size(Box const& box) const { auto const& value = is_row_layout() ? box.computed_values().min_height() : box.computed_values().min_width(); return !value.is_auto(); } bool FlexFormattingContext::has_definite_cross_size(LayoutState::UsedValues const& used_values) const { return is_row_layout() ? used_values.has_definite_height() : used_values.has_definite_width(); } CSSPixels FlexFormattingContext::specified_main_min_size(Box const& box) const { return is_row_layout() ? get_pixel_width(box, box.computed_values().min_width()) : get_pixel_height(box, box.computed_values().min_height()); } CSSPixels FlexFormattingContext::specified_cross_min_size(Box const& box) const { return is_row_layout() ? get_pixel_height(box, box.computed_values().min_height()) : get_pixel_width(box, box.computed_values().min_width()); } bool FlexFormattingContext::has_main_max_size(Box const& box) const { return !should_treat_main_max_size_as_none(box); } bool FlexFormattingContext::has_cross_max_size(Box const& box) const { return !should_treat_cross_max_size_as_none(box); } CSSPixels FlexFormattingContext::specified_main_max_size(Box const& box) const { return is_row_layout() ? get_pixel_width(box, box.computed_values().max_width()) : get_pixel_height(box, box.computed_values().max_height()); } CSSPixels FlexFormattingContext::specified_cross_max_size(Box const& box) const { return is_row_layout() ? get_pixel_height(box, box.computed_values().max_height()) : get_pixel_width(box, box.computed_values().max_width()); } bool FlexFormattingContext::is_cross_auto(Box const& box) const { auto& cross_length = is_row_layout() ? box.computed_values().height() : box.computed_values().width(); return cross_length.is_auto(); } void FlexFormattingContext::set_has_definite_main_size(FlexItem& item) { if (is_row_layout()) item.used_values.set_has_definite_width(true); else item.used_values.set_has_definite_height(true); } void FlexFormattingContext::set_has_definite_cross_size(FlexItem& item) { if (is_row_layout()) item.used_values.set_has_definite_height(true); else item.used_values.set_has_definite_width(true); } void FlexFormattingContext::set_main_size(Box const& box, CSSPixels size) { if (is_row_layout()) m_state.get_mutable(box).set_content_width(size); else m_state.get_mutable(box).set_content_height(size); } void FlexFormattingContext::set_cross_size(Box const& box, CSSPixels size) { if (is_row_layout()) m_state.get_mutable(box).set_content_height(size); else m_state.get_mutable(box).set_content_width(size); } void FlexFormattingContext::set_offset(Box const& box, CSSPixels main_offset, CSSPixels cross_offset) { if (is_row_layout()) m_state.get_mutable(box).offset = CSSPixelPoint { main_offset, cross_offset }; else m_state.get_mutable(box).offset = CSSPixelPoint { cross_offset, main_offset }; } void FlexFormattingContext::set_main_axis_first_margin(FlexItem& item, CSSPixels margin) { item.margins.main_before = margin; if (is_row_layout()) m_state.get_mutable(item.box).margin_left = margin; else m_state.get_mutable(item.box).margin_top = margin; } void FlexFormattingContext::set_main_axis_second_margin(FlexItem& item, CSSPixels margin) { item.margins.main_after = margin; if (is_row_layout()) m_state.get_mutable(item.box).margin_right = margin; else m_state.get_mutable(item.box).margin_bottom = margin; } // https://drafts.csswg.org/css-flexbox-1/#algo-available void FlexFormattingContext::determine_available_space_for_items(AvailableSpace const& available_space) { if (is_row_layout()) { m_available_space_for_items = AxisAgnosticAvailableSpace { .main = available_space.width, .cross = available_space.height, .space = { available_space.width, available_space.height }, }; } else { m_available_space_for_items = AxisAgnosticAvailableSpace { .main = available_space.height, .cross = available_space.width, .space = { available_space.width, available_space.height }, }; } } // https://drafts.csswg.org/css-flexbox-1/#propdef-flex-basis CSS::FlexBasis FlexFormattingContext::used_flex_basis_for_item(FlexItem const& item) const { auto flex_basis = item.box->computed_values().flex_basis(); if (flex_basis.has() && flex_basis.get().is_auto()) { // https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto // When specified on a flex item, the auto keyword retrieves the value of the main size property as the used flex-basis. // If that value is itself auto, then the used value is content. auto const& main_size = is_row_layout() ? item.box->computed_values().width() : item.box->computed_values().height(); if (main_size.is_auto()) { flex_basis = CSS::FlexBasisContent {}; } else { flex_basis = main_size; } } // For example, percentage values of flex-basis are resolved against the flex item’s containing block // (i.e. its flex container); and if that containing block’s size is indefinite, // the used value for flex-basis is content. if (flex_basis.has() && flex_basis.get().is_percentage() && !has_definite_main_size(m_flex_container_state)) { flex_basis = CSS::FlexBasisContent {}; } return flex_basis; } CSSPixels FlexFormattingContext::calculate_main_size_from_cross_size_and_aspect_ratio(CSSPixels cross_size, CSSPixelFraction aspect_ratio) const { if (is_row_layout()) return cross_size * aspect_ratio; return cross_size / aspect_ratio; } CSSPixels FlexFormattingContext::calculate_cross_size_from_main_size_and_aspect_ratio(CSSPixels main_size, CSSPixelFraction aspect_ratio) const { if (is_row_layout()) return main_size / aspect_ratio; return main_size * aspect_ratio; } // This function takes a size in the main axis and adjusts it according to the aspect ratio of the box // if the min/max constraints in the cross axis forces us to come up with a new main axis size. CSSPixels FlexFormattingContext::adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(Box const& box, CSSPixels main_size, CSS::Size const& min_cross_size, CSS::Size const& max_cross_size) const { if (!should_treat_cross_max_size_as_none(box)) { auto max_cross_size_px = max_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height()); main_size = min(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(max_cross_size_px, box.preferred_aspect_ratio().value())); } if (!min_cross_size.is_auto()) { auto min_cross_size_px = min_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height()); main_size = max(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(min_cross_size_px, box.preferred_aspect_ratio().value())); } return main_size; } // https://www.w3.org/TR/css-flexbox-1/#algo-main-item void FlexFormattingContext::determine_flex_base_size_and_hypothetical_main_size(FlexItem& item) { auto& child_box = item.box; item.flex_base_size = [&] { item.used_flex_basis = used_flex_basis_for_item(item); item.used_flex_basis_is_definite = [&](CSS::FlexBasis const& flex_basis) -> bool { if (!flex_basis.has()) return false; auto const& size = flex_basis.get(); if (size.is_auto() || size.is_min_content() || size.is_max_content() || size.is_fit_content()) return false; if (size.is_length()) return true; bool can_resolve_percentages = is_row_layout() ? m_flex_container_state.has_definite_width() : m_flex_container_state.has_definite_height(); if (size.is_calculated()) { auto const& calc_value = size.calculated(); if (calc_value.resolves_to_percentage()) return can_resolve_percentages; if (calc_value.resolves_to_length()) { if (calc_value.contains_percentage()) return can_resolve_percentages; return true; } return false; } VERIFY(size.is_percentage()); return can_resolve_percentages; }(*item.used_flex_basis); // A. If the item has a definite used flex basis, that’s the flex base size. if (item.used_flex_basis_is_definite) { auto const& size = item.used_flex_basis->get(); if (is_row_layout()) return get_pixel_width(child_box, size); return get_pixel_height(child_box, size); } // B. If the flex item has ... // - an intrinsic aspect ratio, // - a used flex basis of content, and // - a definite cross size, if (item.box->has_preferred_aspect_ratio() && item.used_flex_basis->has() && has_definite_cross_size(item)) { // flex_base_size is calculated from definite cross size and intrinsic aspect ratio return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints( item.box, calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item), item.box->preferred_aspect_ratio().value()), computed_cross_min_size(item.box), computed_cross_max_size(item.box)); } // C. If the used flex basis is content or depends on its available space, // and the flex container is being sized under a min-content or max-content constraint // (e.g. when performing automatic table layout [CSS21]), size the item under that constraint. // The flex base size is the item’s resulting main size. if (item.used_flex_basis->has() && m_available_space_for_items->main.is_intrinsic_sizing_constraint()) { if (m_available_space_for_items->main.is_min_content()) return calculate_min_content_main_size(item); return calculate_max_content_main_size(item); } // D. Otherwise, if the used flex basis is content or depends on its available space, // the available main size is infinite, and the flex item’s inline axis is parallel to the main axis, // lay the item out using the rules for a box in an orthogonal flow [CSS3-WRITING-MODES]. // The flex base size is the item’s max-content main size. if (item.used_flex_basis->has() // FIXME: && main_size is infinite && inline axis is parallel to the main axis && false && false) { TODO(); // Use rules for a flex_container in orthogonal flow } // E. Otherwise, size the item into the available space using its used flex basis in place of its main size, // treating a value of content as max-content. If a cross size is needed to determine the main size // (e.g. when the flex item’s main size is in its block axis) and the flex item’s cross size is auto and not definite, // in this calculation use fit-content as the flex item’s cross size. // The flex base size is the item’s resulting main size. // NOTE: If the flex item has a definite main size, just use that as the flex base size. if (has_definite_main_size(item)) return inner_main_size(item); // NOTE: There's a fundamental problem with many CSS specifications in that they neglect to mention // which width to provide when calculating the intrinsic height of a box in various situations. // Spec bug: https://github.com/w3c/csswg-drafts/issues/2890 // NOTE: This is one of many situations where that causes trouble: if this is a flex column layout, // we may need to calculate the intrinsic height of a flex item. This requires a width, but a // width won't be determined until later on in the flex layout algorithm. // In the specific case above (E), the spec mentions using `fit-content` in place of `auto` // if "a cross size is needed to determine the main size", so that's exactly what we do. // NOTE: Finding a suitable width for intrinsic height determination actually happens elsewhere, // in the various helpers that calculate the intrinsic sizes of a flex item, // e.g. calculate_min_content_main_size(). if (item.used_flex_basis->has()) { return calculate_max_content_main_size(item); } return calculate_fit_content_main_size(item); }(); // AD-HOC: This is not mentioned in the spec, but if the item has an aspect ratio, // we may need to adjust the main size in these ways: // - using stretch-fit main size if the flex basis is indefinite. // - in response to cross size min/max constraints. if (item.box->has_preferred_aspect_ratio()) { if (!item.used_flex_basis_is_definite) { item.flex_base_size = inner_main_size(m_flex_container_state); } item.flex_base_size = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(child_box, item.flex_base_size, computed_cross_min_size(child_box), computed_cross_max_size(child_box)); } // The hypothetical main size is the item’s flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero). auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : automatic_minimum_size(item); auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : CSSPixels::max(); item.hypothetical_main_size = max(CSSPixels(0), css_clamp(item.flex_base_size, clamp_min, clamp_max)); // NOTE: At this point, we set the hypothetical main size as the flex item's *temporary* main size. // The size may change again when we resolve flexible lengths, but this is necessary in order for // descendants of this flex item to resolve percentage sizes against something. // // The spec just barely hand-waves about this, but it seems to *roughly* match what other engines do. // See "Note" section here: https://drafts.csswg.org/css-flexbox-1/#definite-sizes if (is_row_layout()) item.used_values.set_temporary_content_width(item.hypothetical_main_size); else item.used_values.set_temporary_content_height(item.hypothetical_main_size); } // https://drafts.csswg.org/css-flexbox-1/#min-size-auto CSSPixels FlexFormattingContext::automatic_minimum_size(FlexItem const& item) const { // To provide a more reasonable default minimum size for flex items, // the used value of a main axis automatic minimum size on a flex item that is not a scroll container is its content-based minimum size; // for scroll containers the automatic minimum size is zero, as usual. if (!item.box->is_scroll_container()) return content_based_minimum_size(item); return 0; } // https://drafts.csswg.org/css-flexbox-1/#specified-size-suggestion Optional FlexFormattingContext::specified_size_suggestion(FlexItem const& item) const { // If the item’s preferred main size is definite and not automatic, // then the specified size suggestion is that size. It is otherwise undefined. if (has_definite_main_size(item) && !should_treat_main_size_as_auto(item.box)) { // NOTE: We use get_pixel_{width,height} to ensure that CSS box-sizing is respected. return is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box)); } return {}; } // https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion CSSPixels FlexFormattingContext::content_size_suggestion(FlexItem const& item) const { auto suggestion = calculate_min_content_main_size(item); if (item.box->has_preferred_aspect_ratio()) { suggestion = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(item.box, suggestion, computed_cross_min_size(item.box), computed_cross_max_size(item.box)); } return suggestion; } // https://drafts.csswg.org/css-flexbox-1/#transferred-size-suggestion Optional FlexFormattingContext::transferred_size_suggestion(FlexItem const& item) const { // If the item has a preferred aspect ratio and its preferred cross size is definite, // then the transferred size suggestion is that size // (clamped by its minimum and maximum cross sizes if they are definite), converted through the aspect ratio. if (item.box->has_preferred_aspect_ratio() && has_definite_cross_size(item)) { auto aspect_ratio = item.box->preferred_aspect_ratio().value(); return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints( item.box, calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item), aspect_ratio), computed_cross_min_size(item.box), computed_cross_max_size(item.box)); } // It is otherwise undefined. return {}; } // https://drafts.csswg.org/css-flexbox-1/#content-based-minimum-size CSSPixels FlexFormattingContext::content_based_minimum_size(FlexItem const& item) const { auto unclamped_size = [&] { // The content-based minimum size of a flex item is the smaller of its specified size suggestion // and its content size suggestion if its specified size suggestion exists; if (auto specified_size_suggestion = this->specified_size_suggestion(item); specified_size_suggestion.has_value()) { return min(specified_size_suggestion.value(), content_size_suggestion(item)); } // otherwise, the smaller of its transferred size suggestion and its content size suggestion // if the element is replaced and its transferred size suggestion exists; if (item.box->is_replaced_box()) { if (auto transferred_size_suggestion = this->transferred_size_suggestion(item); transferred_size_suggestion.has_value()) { return min(transferred_size_suggestion.value(), content_size_suggestion(item)); } } // otherwise its content size suggestion. return content_size_suggestion(item); }(); // In all cases, the size is clamped by the maximum main size if it’s definite. if (has_main_max_size(item.box)) { return min(unclamped_size, specified_main_max_size(item.box)); } return unclamped_size; } // https://www.w3.org/TR/css-flexbox-1/#algo-line-break void FlexFormattingContext::collect_flex_items_into_flex_lines() { // FIXME: Also support wrap-reverse // If the flex container is single-line, collect all the flex items into a single flex line. if (is_single_line()) { FlexLine line; for (auto& item : m_flex_items) { line.items.append(item); } m_flex_lines.append(move(line)); return; } // Otherwise, starting from the first uncollected item, collect consecutive items one by one // until the first time that the next collected item would not fit into the flex container’s inner main size // (or until a forced break is encountered, see §10 Fragmenting Flex Layout). // If the very first uncollected item wouldn't fit, collect just it into the line. // For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.) // Repeat until all flex items have been collected into flex lines. FlexLine line; CSSPixels line_main_size = 0; for (auto& item : m_flex_items) { auto const outer_hypothetical_main_size = item.outer_hypothetical_main_size(); if (!line.items.is_empty() && (line_main_size + outer_hypothetical_main_size) > m_available_space_for_items->main) { m_flex_lines.append(move(line)); line = {}; line_main_size = 0; } line.items.append(item); line_main_size += outer_hypothetical_main_size; // CSS-FLEXBOX-2: Account for gap between flex items. line_main_size += main_gap(); } m_flex_lines.append(move(line)); } // https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths void FlexFormattingContext::resolve_flexible_lengths_for_line(FlexLine& line) { // AD-HOC: The spec tells us to use the "flex container’s inner main size" in this algorithm, // but that doesn't work when we're sizing under a max-content constraint. // In that case, there is effectively infinite size available in the main axis, // but the inner main size has not been assigned yet. // We solve this by calculating our own "available main size" here, which is essentially // infinity under max-content, 0 under min-content, and the inner main size otherwise. AvailableSize available_main_size { AvailableSize::make_indefinite() }; if (m_available_space_for_items->main.is_intrinsic_sizing_constraint()) available_main_size = m_available_space_for_items->main; else available_main_size = AvailableSize::make_definite(inner_main_size(m_flex_container_state)); // 1. Determine the used flex factor. // Sum the outer hypothetical main sizes of all items on the line. // If the sum is less than the flex container’s inner main size, // use the flex grow factor for the rest of this algorithm; otherwise, use the flex shrink factor enum FlexFactor { FlexGrowFactor, FlexShrinkFactor }; auto used_flex_factor = [&]() -> FlexFactor { CSSPixels sum = 0; for (auto const& item : line.items) { sum += item.outer_hypothetical_main_size(); } // CSS-FLEXBOX-2: Account for gap between flex items. sum += main_gap() * (line.items.size() - 1); // AD-HOC: Note that we're using our own "available main size" explained above // instead of the flex container’s inner main size. if (sum < available_main_size) return FlexFactor::FlexGrowFactor; return FlexFactor::FlexShrinkFactor; }(); // 2. Each item in the flex line has a target main size, initially set to its flex base size. // Each item is initially unfrozen and may become frozen. for (auto& item : line.items) { item.target_main_size = item.flex_base_size; item.frozen = false; } // 3. Size inflexible items. for (FlexItem& item : line.items) { if (used_flex_factor == FlexFactor::FlexGrowFactor) { item.flex_factor = item.box->computed_values().flex_grow(); } else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { item.flex_factor = item.box->computed_values().flex_shrink(); } // Freeze, setting its target main size to its hypothetical main size… // - any item that has a flex factor of zero // - if using the flex grow factor: any item that has a flex base size greater than its hypothetical main size // - if using the flex shrink factor: any item that has a flex base size smaller than its hypothetical main size if (item.flex_factor.value() == 0 || (used_flex_factor == FlexFactor::FlexGrowFactor && item.flex_base_size > item.hypothetical_main_size) || (used_flex_factor == FlexFactor::FlexShrinkFactor && item.flex_base_size < item.hypothetical_main_size)) { item.frozen = true; item.target_main_size = item.hypothetical_main_size; } } // 4. Calculate initial free space // Sum the outer sizes of all items on the line, and subtract this from the flex container’s inner main size. // For frozen items, use their outer target main size; for other items, use their outer flex base size. auto calculate_remaining_free_space = [&]() -> Optional { // AD-HOC: If the container is sized under max-content constraints, then remaining_free_space won't have // a value to avoid leaking an infinite value into layout calculations. if (available_main_size.is_intrinsic_sizing_constraint()) return {}; CSSPixels sum = 0; for (auto const& item : line.items) { if (item.frozen) sum += item.outer_target_main_size(); else sum += item.outer_flex_base_size(); } // CSS-FLEXBOX-2: Account for gap between flex items. sum += main_gap() * (line.items.size() - 1); // AD-HOC: Note that we're using our own "available main size" explained above // instead of the flex container’s inner main size. return available_main_size.to_px_or_zero() - sum; }; auto const initial_free_space = calculate_remaining_free_space(); // 5. Loop while (true) { // a. Check for flexible items. // If all the flex items on the line are frozen, free space has been distributed; exit this loop. if (all_of(line.items, [](auto const& item) { return item.frozen; })) { break; } // b. Calculate the remaining free space as for initial free space, above. line.remaining_free_space = calculate_remaining_free_space(); // If the sum of the unfrozen flex items’ flex factors is less than one, multiply the initial free space by this sum. if (auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items(); sum_of_flex_factor_of_unfrozen_items < 1 && initial_free_space.has_value()) { auto value = CSSPixels::nearest_value_for(initial_free_space.value() * sum_of_flex_factor_of_unfrozen_items); // If the magnitude of this value is less than the magnitude of the remaining free space, use this as the remaining free space. if (abs(value) < abs(line.remaining_free_space.value())) line.remaining_free_space = value; } // AD-HOC: We allow the remaining free space to be infinite, but we can't let infinity // leak into the layout geometry, so we treat infinity as zero when used in arithmetic. auto remaining_free_space_or_zero_if_infinite = line.remaining_free_space.has_value() ? line.remaining_free_space.value() : 0; // c. If the remaining free space is non-zero, distribute it proportional to the flex factors: if (line.remaining_free_space != 0) { // If using the flex grow factor if (used_flex_factor == FlexFactor::FlexGrowFactor) { // For every unfrozen item on the line, // find the ratio of the item’s flex grow factor to the sum of the flex grow factors of all unfrozen items on the line. auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items(); for (auto& item : line.items) { if (item.frozen) continue; double ratio = item.flex_factor.value() / sum_of_flex_factor_of_unfrozen_items; // Set the item’s target main size to its flex base size plus a fraction of the remaining free space proportional to the ratio. item.target_main_size = item.flex_base_size + remaining_free_space_or_zero_if_infinite.scaled(ratio); } } // If using the flex shrink factor else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { // For every unfrozen item on the line, multiply its flex shrink factor by its inner flex base size, and note this as its scaled flex shrink factor. for (auto& item : line.items) { if (item.frozen) continue; item.scaled_flex_shrink_factor = item.flex_factor.value() * item.flex_base_size.to_double(); } auto sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line = line.sum_of_scaled_flex_shrink_factor_of_unfrozen_items(); for (auto& item : line.items) { if (item.frozen) continue; // Find the ratio of the item’s scaled flex shrink factor to the sum of the scaled flex shrink factors of all unfrozen items on the line. double ratio = 1.0; if (sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line != 0) ratio = item.scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line; // Set the item’s target main size to its flex base size minus a fraction of the absolute value of the remaining free space proportional to the ratio. // (Note this may result in a negative inner main size; it will be corrected in the next step.) item.target_main_size = item.flex_base_size - abs(remaining_free_space_or_zero_if_infinite).scaled(ratio); } } } // d. Fix min/max violations. CSSPixels total_violation = 0; // Clamp each non-frozen item’s target main size by its used min and max main sizes and floor its content-box size at zero. for (auto& item : line.items) { if (item.frozen) continue; auto used_min_main_size = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto used_max_main_size = has_main_max_size(item.box) ? specified_main_max_size(item.box) : CSSPixels::max(); auto original_target_main_size = item.target_main_size; item.target_main_size = css_clamp(item.target_main_size, used_min_main_size, used_max_main_size); item.target_main_size = max(item.target_main_size, CSSPixels(0)); // If the item’s target main size was made smaller by this, it’s a max violation. if (item.target_main_size < original_target_main_size) item.is_max_violation = true; // If the item’s target main size was made larger by this, it’s a min violation. if (item.target_main_size > original_target_main_size) item.is_min_violation = true; total_violation += item.target_main_size - original_target_main_size; } // e. Freeze over-flexed items. // The total violation is the sum of the adjustments from the previous step ∑(clamped size - unclamped size). // If the total violation is: // Zero // Freeze all items. if (total_violation == 0) { for (auto& item : line.items) { if (!item.frozen) item.frozen = true; } } // Positive // Freeze all the items with min violations. else if (total_violation > 0) { for (auto& item : line.items) { if (!item.frozen && item.is_min_violation) item.frozen = true; } } // Negative // Freeze all the items with max violations. else { for (auto& item : line.items) { if (!item.frozen && item.is_max_violation) item.frozen = true; } } // NOTE: This freezes at least one item, ensuring that the loop makes progress and eventually terminates. // f. Return to the start of this loop. } // NOTE: Calculate the remaining free space once again here, since it's needed later when aligning items. line.remaining_free_space = calculate_remaining_free_space(); // 6. Set each item’s used main size to its target main size. for (auto& item : line.items) { item.main_size = item.target_main_size; set_main_size(item.box, item.target_main_size); // https://drafts.csswg.org/css-flexbox-1/#definite-sizes // 1. If the flex container has a definite main size, then the post-flexing main sizes of its flex items are treated as definite. // 2. If a flex item’s flex basis is definite, then its post-flexing main size is also definite. if (has_definite_main_size(m_flex_container_state) || item.used_flex_basis_is_definite) set_has_definite_main_size(item); } } // https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths void FlexFormattingContext::resolve_flexible_lengths() { for (auto& line : m_flex_lines) { resolve_flexible_lengths_for_line(line); } } // https://drafts.csswg.org/css-flexbox-1/#algo-cross-item void FlexFormattingContext::determine_hypothetical_cross_size_of_item(FlexItem& item, bool resolve_percentage_min_max_sizes) { // Determine the hypothetical cross size of each item by performing layout // as if it were an in-flow block-level box with the used main size // and the given available space, treating auto as fit-content. auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max(); // If we have a definite cross size, this is easy! No need to perform layout, we can just use it as-is. if (has_definite_cross_size(item)) { // To avoid subtracting padding and border twice for `box-sizing: border-box` only min and max clamp should happen on a second pass if (resolve_percentage_min_max_sizes) { item.hypothetical_cross_size = css_clamp(item.hypothetical_cross_size, clamp_min, clamp_max); return; } item.hypothetical_cross_size = css_clamp(inner_cross_size(item), clamp_min, clamp_max); return; } if (item.box->has_preferred_aspect_ratio()) { if (item.used_flex_basis_is_definite) { item.hypothetical_cross_size = calculate_cross_size_from_main_size_and_aspect_ratio(item.main_size.value(), item.box->preferred_aspect_ratio().value()); return; } item.hypothetical_cross_size = inner_cross_size(m_flex_container_state); return; } auto computed_cross_size = [&]() -> CSS::Size { // "... treating auto as fit-content" if (should_treat_cross_size_as_auto(item.box)) return CSS::Size::make_fit_content(); return this->computed_cross_size(item.box); }(); if (computed_cross_size.is_min_content()) { item.hypothetical_cross_size = css_clamp(calculate_min_content_cross_size(item), clamp_min, clamp_max); return; } if (computed_cross_size.is_max_content()) { item.hypothetical_cross_size = css_clamp(calculate_max_content_cross_size(item), clamp_min, clamp_max); return; } if (computed_cross_size.is_fit_content()) { CSSPixels fit_content_cross_size = 0; if (is_row_layout()) { auto available_width = item.main_size.has_value() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite(); auto available_height = AvailableSize::make_indefinite(); fit_content_cross_size = calculate_fit_content_height(item.box, AvailableSpace(available_width, available_height)); } else { fit_content_cross_size = calculate_fit_content_width(item.box, m_available_space_for_items->space); } item.hypothetical_cross_size = css_clamp(fit_content_cross_size, clamp_min, clamp_max); return; } // For indefinite cross sizes, we perform a throwaway layout and then measure it. LayoutState throwaway_state(&m_state); auto& box_state = throwaway_state.get_mutable(item.box); if (is_row_layout()) { box_state.set_content_width(item.main_size.value()); } else { box_state.set_content_height(item.main_size.value()); } // Item has definite main size, layout with that as the used main size. auto independent_formatting_context = create_independent_formatting_context_if_needed(throwaway_state, item.box); // NOTE: Flex items should always create an independent formatting context! VERIFY(independent_formatting_context); auto available_width = is_row_layout() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite(); auto available_height = is_row_layout() ? AvailableSize::make_indefinite() : AvailableSize::make_definite(item.main_size.value()); independent_formatting_context->run(item.box, LayoutMode::Normal, AvailableSpace(available_width, available_height)); auto automatic_cross_size = is_row_layout() ? independent_formatting_context->automatic_content_height() : independent_formatting_context->automatic_content_width(); item.hypothetical_cross_size = css_clamp(automatic_cross_size, clamp_min, clamp_max); } // https://www.w3.org/TR/css-flexbox-1/#algo-cross-line void FlexFormattingContext::calculate_cross_size_of_each_flex_line() { // If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size. if (is_single_line() && has_definite_cross_size(m_flex_container_state)) { m_flex_lines[0].cross_size = inner_cross_size(m_flex_container_state); return; } // Otherwise, for each flex line: for (auto& flex_line : m_flex_lines) { // FIXME: 1. Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline, // and whose cross-axis margins are both non-auto. Find the largest of the distances between each item’s baseline // and its hypothetical outer cross-start edge, and the largest of the distances between each item’s baseline // and its hypothetical outer cross-end edge, and sum these two values. // 2. Among all the items not collected by the previous step, find the largest outer hypothetical cross size. CSSPixels largest_hypothetical_cross_size = 0; for (auto& item : flex_line.items) { if (largest_hypothetical_cross_size < item.hypothetical_cross_size_with_margins()) largest_hypothetical_cross_size = item.hypothetical_cross_size_with_margins(); } // 3. The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero. flex_line.cross_size = max(CSSPixels(0), largest_hypothetical_cross_size); } // If the flex container is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross sizes. // Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically. // AD-HOC: We don't do this when the flex container is being sized under a min-content or max-content constraint. if (is_single_line() && !m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) { auto const& computed_min_size = this->computed_cross_min_size(flex_container()); auto const& computed_max_size = this->computed_cross_max_size(flex_container()); auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0; auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : CSSPixels::max(); m_flex_lines[0].cross_size = css_clamp(m_flex_lines[0].cross_size, cross_min_size, cross_max_size); } } // https://www.w3.org/TR/css-flexbox-1/#algo-stretch void FlexFormattingContext::determine_used_cross_size_of_each_flex_item() { for (auto& flex_line : m_flex_lines) { for (auto& item : flex_line.items) { // If a flex item has align-self: stretch, its computed cross size property is auto, // and neither of its cross-axis margins are auto, the used outer cross size is the used cross size of its flex line, // clamped according to the item’s used min and max cross sizes. auto flex_item_alignment = alignment_for_item(item.box); if ((flex_item_alignment == CSS::AlignItems::Stretch || flex_item_alignment == CSS::AlignItems::Normal) && is_cross_auto(item.box) && !item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto) { auto unclamped_cross_size = flex_line.cross_size - item.margins.cross_before - item.margins.cross_after - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after; auto const& computed_min_size = computed_cross_min_size(item.box); auto const& computed_max_size = computed_cross_max_size(item.box); auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(item.box) : 0; auto cross_max_size = (!should_treat_cross_max_size_as_none(item.box) && !computed_max_size.contains_percentage()) ? specified_cross_max_size(item.box) : CSSPixels::max(); item.cross_size = css_clamp(unclamped_cross_size, cross_min_size, cross_max_size); } else { // Otherwise, the used cross size is the item’s hypothetical cross size. item.cross_size = item.hypothetical_cross_size; } } } } // https://www.w3.org/TR/css-flexbox-1/#algo-main-align void FlexFormattingContext::distribute_any_remaining_free_space() { for (auto& flex_line : m_flex_lines) { // 12.1. CSSPixels used_main_space = 0; size_t auto_margins = 0; for (auto& item : flex_line.items) { used_main_space += item.main_size.value(); if (item.margins.main_before_is_auto) ++auto_margins; if (item.margins.main_after_is_auto) ++auto_margins; used_main_space += item.margins.main_before + item.margins.main_after + item.borders.main_before + item.borders.main_after + item.padding.main_before + item.padding.main_after; } // CSS-FLEXBOX-2: Account for gap between flex items. used_main_space += main_gap() * (flex_line.items.size() - 1); if (flex_line.remaining_free_space.has_value() && flex_line.remaining_free_space.value() > 0 && auto_margins > 0) { CSSPixels size_per_auto_margin = flex_line.remaining_free_space.value() / auto_margins; for (auto& item : flex_line.items) { if (item.margins.main_before_is_auto) set_main_axis_first_margin(item, size_per_auto_margin); if (item.margins.main_after_is_auto) set_main_axis_second_margin(item, size_per_auto_margin); } } else { for (auto& item : flex_line.items) { if (item.margins.main_before_is_auto) set_main_axis_first_margin(item, 0); if (item.margins.main_after_is_auto) set_main_axis_second_margin(item, 0); } } // 12.2. // CSS-FLEXBOX-2: Account for gap between items. CSSPixels space_between_items = main_gap(); CSSPixels initial_offset = 0; auto number_of_items = flex_line.items.size(); if (auto_margins == 0 && number_of_items > 0) { switch (flex_container().computed_values().justify_content()) { case CSS::JustifyContent::Start: initial_offset = 0; break; case CSS::JustifyContent::Stretch: case CSS::JustifyContent::Normal: case CSS::JustifyContent::FlexStart: if (is_direction_reverse()) { initial_offset = inner_main_size(m_flex_container_state); } else { initial_offset = 0; } break; case CSS::JustifyContent::End: initial_offset = inner_main_size(m_flex_container_state); break; case CSS::JustifyContent::FlexEnd: if (is_direction_reverse()) { initial_offset = 0; } else { initial_offset = inner_main_size(m_flex_container_state); } break; case CSS::JustifyContent::Center: initial_offset = (inner_main_size(m_flex_container_state) - used_main_space) / 2; if (is_direction_reverse()) { initial_offset = inner_main_size(m_flex_container_state) - initial_offset; } break; case CSS::JustifyContent::SpaceBetween: if (is_direction_reverse()) { initial_offset = inner_main_size(m_flex_container_state); } else { initial_offset = 0; } if (flex_line.remaining_free_space.has_value() && number_of_items > 1) space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / (number_of_items - 1)); break; case CSS::JustifyContent::SpaceAround: if (flex_line.remaining_free_space.has_value()) space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / number_of_items); if (is_direction_reverse()) { initial_offset = inner_main_size(m_flex_container_state) - space_between_items / 2; } else { initial_offset = space_between_items / 2; } break; case CSS::JustifyContent::SpaceEvenly: if (flex_line.remaining_free_space.has_value()) space_between_items = max(CSSPixels(0), flex_line.remaining_free_space.value() / (number_of_items + 1)); if (is_direction_reverse()) { initial_offset = inner_main_size(m_flex_container_state) - space_between_items; } else { initial_offset = space_between_items; } break; } } // For reverse, we use FlexRegionRenderCursor::Right // to indicate the cursor offset is the end and render backwards // Otherwise the cursor offset is the 'start' of the region or initial offset enum class FlexRegionRenderCursor { Left, Right }; auto flex_region_render_cursor = FlexRegionRenderCursor::Left; if (auto_margins == 0) { switch (flex_container().computed_values().justify_content()) { case CSS::JustifyContent::Normal: case CSS::JustifyContent::FlexStart: case CSS::JustifyContent::Center: case CSS::JustifyContent::SpaceAround: case CSS::JustifyContent::SpaceBetween: case CSS::JustifyContent::SpaceEvenly: case CSS::JustifyContent::Stretch: if (is_direction_reverse()) { flex_region_render_cursor = FlexRegionRenderCursor::Right; } break; case CSS::JustifyContent::End: flex_region_render_cursor = FlexRegionRenderCursor::Right; break; case CSS::JustifyContent::FlexEnd: if (!is_direction_reverse()) { flex_region_render_cursor = FlexRegionRenderCursor::Right; } break; default: break; } } CSSPixels cursor_offset = initial_offset; auto place_item = [&](FlexItem& item) { auto amount_of_main_size_used = item.main_size.value() + item.margins.main_before + item.borders.main_before + item.padding.main_before + item.margins.main_after + item.borders.main_after + item.padding.main_after + space_between_items; if (is_direction_reverse() && flex_region_render_cursor == FlexRegionRenderCursor::Right) { item.main_offset = cursor_offset - item.main_size.value() - item.margins.main_after - item.borders.main_after - item.padding.main_after; cursor_offset -= amount_of_main_size_used; } else if (flex_region_render_cursor == FlexRegionRenderCursor::Right) { cursor_offset -= amount_of_main_size_used; item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before; } else { item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before; cursor_offset += amount_of_main_size_used; } }; if (flex_region_render_cursor == FlexRegionRenderCursor::Right) { for (ssize_t i = flex_line.items.size() - 1; i >= 0; --i) { auto& item = flex_line.items[i]; place_item(item); } } else { for (size_t i = 0; i < flex_line.items.size(); ++i) { auto& item = flex_line.items[i]; place_item(item); } } } } void FlexFormattingContext::dump_items() const { dbgln("\033[34;1mflex-container\033[0m {}, direction: {}, current-size: {}x{}", flex_container().debug_description(), is_row_layout() ? "row" : "column", m_flex_container_state.content_width(), m_flex_container_state.content_height()); for (size_t i = 0; i < m_flex_lines.size(); ++i) { dbgln("{} flex-line #{}:", flex_container().debug_description(), i); for (size_t j = 0; j < m_flex_lines[i].items.size(); ++j) { auto& item = m_flex_lines[i].items[j]; dbgln("{} flex-item #{}: {} (main:{}, cross:{})", flex_container().debug_description(), j, item.box->debug_description(), item.main_size.value_or(-1), item.cross_size.value_or(-1)); } } } CSS::AlignItems FlexFormattingContext::alignment_for_item(Box const& box) const { switch (box.computed_values().align_self()) { case CSS::AlignSelf::Auto: return flex_container().computed_values().align_items(); case CSS::AlignSelf::End: return CSS::AlignItems::End; case CSS::AlignSelf::Normal: return CSS::AlignItems::Normal; case CSS::AlignSelf::SelfStart: return CSS::AlignItems::SelfStart; case CSS::AlignSelf::SelfEnd: return CSS::AlignItems::SelfEnd; case CSS::AlignSelf::FlexStart: return CSS::AlignItems::FlexStart; case CSS::AlignSelf::FlexEnd: return CSS::AlignItems::FlexEnd; case CSS::AlignSelf::Center: return CSS::AlignItems::Center; case CSS::AlignSelf::Baseline: return CSS::AlignItems::Baseline; case CSS::AlignSelf::Start: return CSS::AlignItems::Start; case CSS::AlignSelf::Stretch: return CSS::AlignItems::Stretch; case CSS::AlignSelf::Safe: return CSS::AlignItems::Safe; case CSS::AlignSelf::Unsafe: return CSS::AlignItems::Unsafe; default: VERIFY_NOT_REACHED(); } } void FlexFormattingContext::align_all_flex_items_along_the_cross_axis() { // FIXME: Take better care of margins for (auto& flex_line : m_flex_lines) { for (auto& item : flex_line.items) { CSSPixels half_line_size = flex_line.cross_size / 2; switch (alignment_for_item(item.box)) { case CSS::AlignItems::Baseline: // FIXME: Implement this // Fallthrough case CSS::AlignItems::Start: case CSS::AlignItems::FlexStart: case CSS::AlignItems::Stretch: case CSS::AlignItems::Normal: item.cross_offset = -half_line_size + item.margins.cross_before + item.borders.cross_before + item.padding.cross_before; break; case CSS::AlignItems::End: case CSS::AlignItems::FlexEnd: item.cross_offset = half_line_size - item.cross_size.value() - item.margins.cross_after - item.borders.cross_after - item.padding.cross_after; break; case CSS::AlignItems::Center: item.cross_offset = -(item.cross_size.value() / 2); break; default: break; } } } } // https://www.w3.org/TR/css-flexbox-1/#algo-line-align void FlexFormattingContext::align_all_flex_lines() { if (m_flex_lines.is_empty()) return; // FIXME: Support reverse CSSPixels cross_size_of_flex_container = inner_cross_size(m_flex_container_state); if (is_single_line()) { // For single-line flex containers, we only need to center the line along the cross axis. auto& flex_line = m_flex_lines[0]; CSSPixels center_of_line = cross_size_of_flex_container / 2; for (auto& item : flex_line.items) { item.cross_offset += center_of_line; } } else { CSSPixels sum_of_flex_line_cross_sizes = 0; for (auto& line : m_flex_lines) sum_of_flex_line_cross_sizes += line.cross_size; // CSS-FLEXBOX-2: Account for gap between flex lines. sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1); CSSPixels start_of_current_line = 0; CSSPixels gap_size = 0; switch (flex_container().computed_values().align_content()) { case CSS::AlignContent::FlexStart: start_of_current_line = 0; break; case CSS::AlignContent::FlexEnd: start_of_current_line = cross_size_of_flex_container - sum_of_flex_line_cross_sizes; break; case CSS::AlignContent::Center: start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2); break; case CSS::AlignContent::SpaceBetween: { start_of_current_line = 0; auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes; auto leftover_flex_lines_size = m_flex_lines.size(); if (leftover_free_space >= 0 && leftover_flex_lines_size > 1) { int gap_count = leftover_flex_lines_size - 1; gap_size = leftover_free_space / gap_count; } break; } case CSS::AlignContent::SpaceAround: { auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes; if (leftover_free_space < 0) { // If the leftover free-space is negative this value is identical to center. start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2); break; } gap_size = leftover_free_space / m_flex_lines.size(); // The spacing between the first/last lines and the flex container edges is half the size of the spacing between flex lines. start_of_current_line = gap_size / 2; break; } case CSS::AlignContent::SpaceEvenly: { auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes; if (leftover_free_space < 0) { // If the leftover free-space is negative this value is identical to center. start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2); break; } gap_size = leftover_free_space / (m_flex_lines.size() + 1); // The spacing between the first/last lines and the flex container edges is the size of the spacing between flex lines. start_of_current_line = gap_size; break; } case CSS::AlignContent::Normal: case CSS::AlignContent::Stretch: start_of_current_line = 0; break; } for (auto& flex_line : m_flex_lines) { CSSPixels center_of_current_line = start_of_current_line + (flex_line.cross_size / 2); for (auto& item : flex_line.items) { item.cross_offset += center_of_current_line; } start_of_current_line += flex_line.cross_size + gap_size; // CSS-FLEXBOX-2: Account for gap between flex lines. start_of_current_line += cross_gap(); } } } void FlexFormattingContext::copy_dimensions_from_flex_items_to_boxes() { for (auto& item : m_flex_items) { auto const& box = item.box; item.used_values.padding_left = box->computed_values().padding().left().to_px(box, m_flex_container_state.content_width()); item.used_values.padding_right = box->computed_values().padding().right().to_px(box, m_flex_container_state.content_width()); item.used_values.padding_top = box->computed_values().padding().top().to_px(box, m_flex_container_state.content_width()); item.used_values.padding_bottom = box->computed_values().padding().bottom().to_px(box, m_flex_container_state.content_width()); item.used_values.margin_left = box->computed_values().margin().left().to_px(box, m_flex_container_state.content_width()); item.used_values.margin_right = box->computed_values().margin().right().to_px(box, m_flex_container_state.content_width()); item.used_values.margin_top = box->computed_values().margin().top().to_px(box, m_flex_container_state.content_width()); item.used_values.margin_bottom = box->computed_values().margin().bottom().to_px(box, m_flex_container_state.content_width()); item.used_values.border_left = box->computed_values().border_left().width; item.used_values.border_right = box->computed_values().border_right().width; item.used_values.border_top = box->computed_values().border_top().width; item.used_values.border_bottom = box->computed_values().border_bottom().width; set_main_size(box, item.main_size.value()); set_cross_size(box, item.cross_size.value()); set_offset(box, item.main_offset, item.cross_offset); } } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-sizes void FlexFormattingContext::determine_intrinsic_size_of_flex_container() { if (m_available_space_for_items->main.is_intrinsic_sizing_constraint()) { CSSPixels main_size = calculate_intrinsic_main_size_of_flex_container(); set_main_size(flex_container(), main_size); } if (m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) { CSSPixels cross_size = calculate_intrinsic_cross_size_of_flex_container(); set_cross_size(flex_container(), cross_size); } } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-main-sizes CSSPixels FlexFormattingContext::calculate_intrinsic_main_size_of_flex_container() { // The min-content main size of a single-line flex container is calculated identically to the max-content main size, // except that the flex items’ min-content contributions are used instead of their max-content contributions. // However, for a multi-line container, it is simply the largest min-content contribution of all the non-collapsed flex items in the flex container. if (!is_single_line() && m_available_space_for_items->main.is_min_content()) { CSSPixels largest_contribution = 0; for (auto const& item : m_flex_items) { // FIXME: Skip collapsed flex items. largest_contribution = max(largest_contribution, calculate_main_min_content_contribution(item)); } return largest_contribution; } // The max-content main size of a flex container is, fundamentally, the smallest size the flex container // can take such that when flex layout is run with that container size, each flex item ends up at least // as large as its max-content contribution, to the extent allowed by the items’ flexibility. // It is calculated, considering only non-collapsed flex items, by: // 1. For each flex item, subtract its outer flex base size from its max-content contribution size. // If that result is positive, divide it by the item’s flex grow factor if the flex grow factor is ≥ 1, // or multiply it by the flex grow factor if the flex grow factor is < 1; if the result is negative, // divide it by the item’s scaled flex shrink factor (if dividing by zero, treat the result as negative infinity). // This is the item’s desired flex fraction. for (auto& item : m_flex_items) { CSSPixels contribution = 0; if (m_available_space_for_items->main.is_min_content()) contribution = calculate_main_min_content_contribution(item); else if (m_available_space_for_items->main.is_max_content()) contribution = calculate_main_max_content_contribution(item); CSSPixels outer_flex_base_size = item.flex_base_size + item.margins.main_before + item.margins.main_after + item.borders.main_before + item.borders.main_after + item.padding.main_before + item.padding.main_after; CSSPixels result = contribution - outer_flex_base_size; if (result > 0) { if (item.box->computed_values().flex_grow() >= 1) { result.scale_by(1 / item.box->computed_values().flex_grow()); } else { result.scale_by(item.box->computed_values().flex_grow()); } } else if (result < 0) { if (item.scaled_flex_shrink_factor == 0) result = CSSPixels::min(); else result.scale_by(1 / item.scaled_flex_shrink_factor); } item.desired_flex_fraction = result.to_double(); } // 2. Place all flex items into lines of infinite length. m_flex_lines.clear(); if (!m_flex_items.is_empty()) m_flex_lines.append(FlexLine {}); for (auto& item : m_flex_items) { // FIXME: Honor breaking requests. m_flex_lines.last().items.append(item); } // Within each line, find the greatest (most positive) desired flex fraction among all the flex items. // This is the line’s chosen flex fraction. for (auto& flex_line : m_flex_lines) { float greatest_desired_flex_fraction = 0; float sum_of_flex_grow_factors = 0; float sum_of_flex_shrink_factors = 0; for (auto& item : flex_line.items) { greatest_desired_flex_fraction = max(greatest_desired_flex_fraction, item.desired_flex_fraction); sum_of_flex_grow_factors += item.box->computed_values().flex_grow(); sum_of_flex_shrink_factors += item.box->computed_values().flex_shrink(); } float chosen_flex_fraction = greatest_desired_flex_fraction; // 3. If the chosen flex fraction is positive, and the sum of the line’s flex grow factors is less than 1, // divide the chosen flex fraction by that sum. if (chosen_flex_fraction > 0 && sum_of_flex_grow_factors < 1) chosen_flex_fraction /= sum_of_flex_grow_factors; // If the chosen flex fraction is negative, and the sum of the line’s flex shrink factors is less than 1, // multiply the chosen flex fraction by that sum. if (chosen_flex_fraction < 0 && sum_of_flex_shrink_factors < 1) chosen_flex_fraction *= sum_of_flex_shrink_factors; flex_line.chosen_flex_fraction = chosen_flex_fraction; } auto determine_main_size = [&]() -> CSSPixels { CSSPixels largest_sum = 0; for (auto& flex_line : m_flex_lines) { // 4. Add each item’s flex base size to the product of its flex grow factor (scaled flex shrink factor, if shrinking) // and the chosen flex fraction, then clamp that result by the max main size floored by the min main size. CSSPixels sum = 0; for (auto& item : flex_line.items) { double product = 0; if (item.desired_flex_fraction > 0) product = flex_line.chosen_flex_fraction * static_cast(item.box->computed_values().flex_grow()); else if (item.desired_flex_fraction < 0) product = flex_line.chosen_flex_fraction * item.scaled_flex_shrink_factor; auto result = item.flex_base_size + CSSPixels::nearest_value_for(product); auto const& computed_min_size = this->computed_main_min_size(item.box); auto const& computed_max_size = this->computed_main_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto clamp_max = (!should_treat_main_max_size_as_none(item.box) && !computed_max_size.contains_percentage()) ? specified_main_max_size(item.box) : CSSPixels::max(); result = css_clamp(result, clamp_min, clamp_max); // NOTE: The spec doesn't mention anything about the *outer* size here, but if we don't add the margin box, // flex items with non-zero padding/border/margin in the main axis end up overflowing the container. result = item.add_main_margin_box_sizes(result); sum += result; } // CSS-FLEXBOX-2: Account for gap between flex items. sum += main_gap() * (flex_line.items.size() - 1); largest_sum = max(largest_sum, sum); } // 5. The flex container’s max-content size is the largest sum (among all the lines) of the afore-calculated sizes of all items within a single line. return largest_sum; }; auto main_size = determine_main_size(); set_main_size(flex_container(), main_size); return main_size; } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-cross-sizes CSSPixels FlexFormattingContext::calculate_intrinsic_cross_size_of_flex_container() { // The min-content/max-content cross size of a single-line flex container // is the largest min-content contribution/max-content contribution (respectively) of its flex items. if (is_single_line()) { auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) { CSSPixels largest_contribution = 0; for (auto& item : m_flex_items) { CSSPixels contribution = 0; if (m_available_space_for_items->cross.is_min_content()) contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes); else if (m_available_space_for_items->cross.is_max_content()) contribution = calculate_cross_max_content_contribution(item, resolve_percentage_min_max_sizes); largest_contribution = max(largest_contribution, contribution); } return largest_contribution; }; auto first_pass_largest_contribution = calculate_largest_contribution(false); set_cross_size(flex_container(), first_pass_largest_contribution); auto second_pass_largest_contribution = calculate_largest_contribution(true); return second_pass_largest_contribution; } if (is_row_layout()) { // row multi-line flex container cross-size // The min-content/max-content cross size is the sum of the flex line cross sizes resulting from // sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively). // NOTE: We fall through to the ad-hoc section below. } else { // column multi-line flex container cross-size // The min-content cross size is the largest min-content contribution among all of its flex items. if (m_available_space_for_items->cross.is_min_content()) { auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) { CSSPixels largest_contribution = 0; for (auto& item : m_flex_items) { CSSPixels contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes); largest_contribution = max(largest_contribution, contribution); } return largest_contribution; }; auto first_pass_largest_contribution = calculate_largest_contribution(false); set_cross_size(flex_container(), first_pass_largest_contribution); auto second_pass_largest_contribution = calculate_largest_contribution(true); return second_pass_largest_contribution; } // The max-content cross size is the sum of the flex line cross sizes resulting from // sizing the flex container under a cross-axis max-content constraint, // using the largest max-content cross-size contribution among the flex items // as the available space in the cross axis for each of the flex items during layout. // NOTE: We fall through to the ad-hoc section below. } CSSPixels sum_of_flex_line_cross_sizes = 0; for (auto& flex_line : m_flex_lines) { sum_of_flex_line_cross_sizes += flex_line.cross_size; } // CSS-FLEXBOX-2: Account for gap between flex lines. sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1); return sum_of_flex_line_cross_sizes; } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions CSSPixels FlexFormattingContext::calculate_main_min_content_contribution(FlexItem const& item) const { // The main-size min-content contribution of a flex item is // the larger of its outer min-content size and outer preferred size if that is not auto, // clamped by its min/max main size. auto larger_size = [&] { auto inner_min_content_size = calculate_min_content_main_size(item); if (computed_main_size(item.box).is_auto()) return inner_min_content_size; auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box)); return max(inner_min_content_size, inner_preferred_size); }(); auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : CSSPixels::max(); auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max); return item.add_main_margin_box_sizes(clamped_inner_size); } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions CSSPixels FlexFormattingContext::calculate_main_max_content_contribution(FlexItem const& item) const { // The main-size max-content contribution of a flex item is // the larger of its outer max-content size and outer preferred size if that is not auto, // clamped by its min/max main size. auto larger_size = [&] { auto inner_max_content_size = calculate_max_content_main_size(item); if (computed_main_size(item.box).is_auto()) return inner_max_content_size; auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box)); return max(inner_max_content_size, inner_preferred_size); }(); auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : CSSPixels::max(); auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max); return item.add_main_margin_box_sizes(clamped_inner_size); } bool FlexFormattingContext::should_treat_main_size_as_auto(Box const& box) const { if (is_row_layout()) return should_treat_width_as_auto(box, m_available_space_for_items->space); return should_treat_height_as_auto(box, m_available_space_for_items->space); } bool FlexFormattingContext::should_treat_cross_size_as_auto(Box const& box) const { if (is_row_layout()) return should_treat_height_as_auto(box, m_available_space_for_items->space); return should_treat_width_as_auto(box, m_available_space_for_items->space); } bool FlexFormattingContext::should_treat_main_max_size_as_none(Box const& box) const { if (is_row_layout()) return should_treat_max_width_as_none(box, m_available_space_for_items->space.width); return should_treat_max_height_as_none(box, m_available_space_for_items->space.height); } bool FlexFormattingContext::should_treat_cross_max_size_as_none(Box const& box) const { if (is_row_layout()) return should_treat_max_height_as_none(box, m_available_space_for_items->space.height); return should_treat_max_width_as_none(box, m_available_space_for_items->space.width); } CSSPixels FlexFormattingContext::calculate_cross_min_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const { auto size = [&] { if (should_treat_cross_size_as_auto(item.box)) return calculate_min_content_cross_size(item); return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box)); }(); auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max(); auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max); return item.add_cross_margin_box_sizes(clamped_inner_size); } CSSPixels FlexFormattingContext::calculate_cross_max_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const { auto size = [&] { if (should_treat_cross_size_as_auto(item.box)) return calculate_max_content_cross_size(item); return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box)); }(); auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!should_treat_cross_max_size_as_none(item.box) && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : CSSPixels::max(); auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max); return item.add_cross_margin_box_sizes(clamped_inner_size); } CSSPixels FlexFormattingContext::calculate_width_to_use_when_determining_intrinsic_height_of_item(FlexItem const& item) const { auto const& box = *item.box; auto computed_width = box.computed_values().width(); auto const& computed_min_width = box.computed_values().min_width(); auto const& computed_max_width = box.computed_values().max_width(); auto clamp_min = (!computed_min_width.is_auto() && (!computed_min_width.contains_percentage())) ? get_pixel_width(box, computed_min_width) : 0; auto clamp_max = (!should_treat_max_width_as_none(box, m_available_space_for_items->space.width) && (!computed_max_width.contains_percentage())) ? get_pixel_width(box, computed_max_width) : CSSPixels::max(); CSSPixels width; if (should_treat_width_as_auto(box, m_available_space_for_items->space) || computed_width.is_fit_content()) width = calculate_fit_content_width(box, m_available_space_for_items->space); else if (computed_width.is_min_content()) width = calculate_min_content_width(box); else if (computed_width.is_max_content()) width = calculate_max_content_width(box); return css_clamp(width, clamp_min, clamp_max); } CSSPixels FlexFormattingContext::calculate_min_content_main_size(FlexItem const& item) const { if (is_row_layout()) { return calculate_min_content_width(item.box); } auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space); if (available_space.width.is_indefinite()) { available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item)); } return calculate_min_content_height(item.box, available_space.width.to_px_or_zero()); } CSSPixels FlexFormattingContext::calculate_max_content_main_size(FlexItem const& item) const { if (is_row_layout()) { return calculate_max_content_width(item.box); } auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space); if (available_space.width.is_indefinite()) { available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item)); } return calculate_max_content_height(item.box, available_space.width.to_px_or_zero()); } CSSPixels FlexFormattingContext::calculate_fit_content_main_size(FlexItem const& item) const { if (is_row_layout()) return calculate_fit_content_width(item.box, m_available_space_for_items->space); return calculate_fit_content_height(item.box, m_available_space_for_items->space); } CSSPixels FlexFormattingContext::calculate_fit_content_cross_size(FlexItem const& item) const { if (!is_row_layout()) return calculate_fit_content_width(item.box, m_available_space_for_items->space); return calculate_fit_content_height(item.box, m_available_space_for_items->space); } CSSPixels FlexFormattingContext::calculate_min_content_cross_size(FlexItem const& item) const { if (is_row_layout()) { auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space); if (available_space.width.is_indefinite()) { available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item)); } return calculate_min_content_height(item.box, available_space.width.to_px_or_zero()); } return calculate_min_content_width(item.box); } CSSPixels FlexFormattingContext::calculate_max_content_cross_size(FlexItem const& item) const { if (is_row_layout()) { auto available_space = item.used_values.available_inner_space_or_constraints_from(m_available_space_for_items->space); if (available_space.width.is_indefinite()) { available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item)); } return calculate_max_content_height(item.box, available_space.width.to_px_or_zero()); } return calculate_max_content_width(item.box); } // https://drafts.csswg.org/css-flexbox-1/#stretched bool FlexFormattingContext::flex_item_is_stretched(FlexItem const& item) const { auto alignment = alignment_for_item(item.box); if (alignment != CSS::AlignItems::Stretch && alignment != CSS::AlignItems::Normal) return false; // If the cross size property of the flex item computes to auto, and neither of the cross-axis margins are auto, the flex item is stretched. auto const& computed_cross_size = is_row_layout() ? item.box->computed_values().height() : item.box->computed_values().width(); return computed_cross_size.is_auto() && !item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto; } CSS::Size const& FlexFormattingContext::computed_main_size(Box const& box) const { return is_row_layout() ? box.computed_values().width() : box.computed_values().height(); } CSS::Size const& FlexFormattingContext::computed_main_min_size(Box const& box) const { return is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); } CSS::Size const& FlexFormattingContext::computed_main_max_size(Box const& box) const { return is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); } CSS::Size const& FlexFormattingContext::computed_cross_size(Box const& box) const { return !is_row_layout() ? box.computed_values().width() : box.computed_values().height(); } CSS::Size const& FlexFormattingContext::computed_cross_min_size(Box const& box) const { return !is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); } CSS::Size const& FlexFormattingContext::computed_cross_max_size(Box const& box) const { return !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); } // https://drafts.csswg.org/css-flexbox-1/#algo-cross-margins void FlexFormattingContext::resolve_cross_axis_auto_margins() { for (auto& line : m_flex_lines) { for (auto& item : line.items) { // If a flex item has auto cross-axis margins: if (!item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto) continue; // If its outer cross size (treating those auto margins as zero) is less than the cross size of its flex line, // distribute the difference in those sizes equally to the auto margins. auto outer_cross_size = item.cross_size.value() + item.padding.cross_before + item.padding.cross_after + item.borders.cross_before + item.borders.cross_after; if (outer_cross_size < line.cross_size) { CSSPixels remainder = line.cross_size - outer_cross_size; if (item.margins.cross_before_is_auto && item.margins.cross_after_is_auto) { item.margins.cross_before = remainder / 2; item.margins.cross_after = remainder / 2; } else if (item.margins.cross_before_is_auto) { item.margins.cross_before = remainder; } else { item.margins.cross_after = remainder; } } else { // FIXME: Otherwise, if the block-start or inline-start margin (whichever is in the cross axis) is auto, set it to zero. // Set the opposite margin so that the outer cross size of the item equals the cross size of its flex line. } } } } // https://drafts.csswg.org/css-flexbox-1/#algo-line-stretch void FlexFormattingContext::handle_align_content_stretch() { // If the flex container has a definite cross size, if (!has_definite_cross_size(m_flex_container_state)) return; // align-content is stretch, if (flex_container().computed_values().align_content() != CSS::AlignContent::Stretch && flex_container().computed_values().align_content() != CSS::AlignContent::Normal) return; // and the sum of the flex lines' cross sizes is less than the flex container’s inner cross size, CSSPixels sum_of_flex_line_cross_sizes = 0; for (auto& line : m_flex_lines) sum_of_flex_line_cross_sizes += line.cross_size; // CSS-FLEXBOX-2: Account for gap between flex lines. sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1); if (sum_of_flex_line_cross_sizes >= inner_cross_size(m_flex_container_state)) return; // increase the cross size of each flex line by equal amounts // such that the sum of their cross sizes exactly equals the flex container’s inner cross size. CSSPixels remainder = inner_cross_size(m_flex_container_state) - sum_of_flex_line_cross_sizes; CSSPixels extra_per_line = remainder / m_flex_lines.size(); for (auto& line : m_flex_lines) line.cross_size += extra_per_line; } // https://drafts.csswg.org/css-flexbox-1/#abspos-items CSSPixelPoint FlexFormattingContext::calculate_static_position(Box const& box) const { // The cross-axis edges of the static-position rectangle of an absolutely-positioned child // of a flex container are the content edges of the flex container. CSSPixels cross_offset = 0; CSSPixels half_line_size = inner_cross_size(m_flex_container_state) / 2; auto cross_to_px = [&](CSS::LengthPercentage const& length_percentage) -> CSSPixels { return length_percentage.to_px(box, m_flex_container_state.content_width()); }; auto main_to_px = [&](CSS::LengthPercentage const& length_percentage) -> CSSPixels { return length_percentage.to_px(box, m_flex_container_state.content_width()); }; auto const& box_state = m_state.get(box); CSSPixels cross_margin_before = is_row_layout() ? cross_to_px(box.computed_values().margin().top()) : cross_to_px(box.computed_values().margin().left()); CSSPixels cross_margin_after = is_row_layout() ? cross_to_px(box.computed_values().margin().bottom()) : cross_to_px(box.computed_values().margin().right()); CSSPixels cross_border_before = is_row_layout() ? box.computed_values().border_top().width : box.computed_values().border_left().width; CSSPixels cross_border_after = is_row_layout() ? box.computed_values().border_bottom().width : box.computed_values().border_right().width; CSSPixels cross_padding_before = is_row_layout() ? cross_to_px(box.computed_values().padding().top()) : cross_to_px(box.computed_values().padding().left()); CSSPixels cross_padding_after = is_row_layout() ? cross_to_px(box.computed_values().padding().bottom()) : cross_to_px(box.computed_values().padding().right()); CSSPixels main_margin_before = is_row_layout() ? main_to_px(box.computed_values().margin().left()) : main_to_px(box.computed_values().margin().top()); CSSPixels main_margin_after = is_row_layout() ? main_to_px(box.computed_values().margin().right()) : main_to_px(box.computed_values().margin().bottom()); CSSPixels main_border_before = is_row_layout() ? box.computed_values().border_left().width : box.computed_values().border_top().width; CSSPixels main_border_after = is_row_layout() ? box.computed_values().border_right().width : box.computed_values().border_bottom().width; CSSPixels main_padding_before = is_row_layout() ? main_to_px(box.computed_values().padding().left()) : main_to_px(box.computed_values().padding().top()); CSSPixels main_padding_after = is_row_layout() ? main_to_px(box.computed_values().padding().right()) : main_to_px(box.computed_values().padding().bottom()); switch (alignment_for_item(box)) { case CSS::AlignItems::Baseline: // FIXME: Implement this // Fallthrough case CSS::AlignItems::Start: case CSS::AlignItems::FlexStart: case CSS::AlignItems::SelfStart: case CSS::AlignItems::Stretch: case CSS::AlignItems::Normal: cross_offset = -half_line_size; break; case CSS::AlignItems::End: case CSS::AlignItems::SelfEnd: case CSS::AlignItems::FlexEnd: cross_offset = half_line_size - inner_cross_size(box_state) - (cross_margin_before + cross_margin_after) - (cross_border_before + cross_border_after) - (cross_padding_before + cross_padding_after); break; case CSS::AlignItems::Center: cross_offset = -((inner_cross_size(box_state) + cross_margin_after + cross_margin_before + cross_border_before + cross_border_after + cross_padding_before + cross_padding_after) / 2); break; default: break; } cross_offset += inner_cross_size(m_flex_container_state) / 2; // The main-axis edges of the static-position rectangle are where the margin edges of the child // would be positioned if it were the sole flex item in the flex container, // assuming both the child and the flex container were fixed-size boxes of their used size. // (For this purpose, auto margins are treated as zero. bool pack_from_end = true; CSSPixels main_offset = 0; switch (flex_container().computed_values().justify_content()) { case CSS::JustifyContent::Start: pack_from_end = false; break; case CSS::JustifyContent::Stretch: case CSS::JustifyContent::Normal: case CSS::JustifyContent::FlexStart: case CSS::JustifyContent::SpaceBetween: pack_from_end = is_direction_reverse(); break; case CSS::JustifyContent::End: pack_from_end = true; break; case CSS::JustifyContent::FlexEnd: pack_from_end = !is_direction_reverse(); break; case CSS::JustifyContent::Center: case CSS::JustifyContent::SpaceAround: case CSS::JustifyContent::SpaceEvenly: pack_from_end = false; main_offset = (inner_main_size(m_flex_container_state) - inner_main_size(box_state) - main_margin_before - main_margin_after - main_border_before - main_border_after - main_padding_before - main_padding_after) / 2; break; } if (pack_from_end) main_offset += inner_main_size(m_flex_container_state) - inner_main_size(box_state) - main_margin_before - main_margin_after - main_border_before - main_border_after - main_padding_before - main_padding_after; auto static_position_offset = is_row_layout() ? CSSPixelPoint { main_offset, cross_offset } : CSSPixelPoint { cross_offset, main_offset }; auto absolute_position_of_flex_container = absolute_content_rect(flex_container()).location(); auto absolute_position_of_abspos_containing_block = absolute_content_rect(*box.containing_block()).location(); auto diff = absolute_position_of_flex_container - absolute_position_of_abspos_containing_block; return static_position_offset + diff; } double FlexFormattingContext::FlexLine::sum_of_flex_factor_of_unfrozen_items() const { double sum = 0; for (auto const& item : items) { if (!item.frozen) sum += item.flex_factor.value(); } return sum; } double FlexFormattingContext::FlexLine::sum_of_scaled_flex_shrink_factor_of_unfrozen_items() const { double sum = 0; for (auto const& item : items) { if (!item.frozen) sum += item.scaled_flex_shrink_factor; } return sum; } CSSPixels FlexFormattingContext::main_gap() const { auto const& computed_values = flex_container().computed_values(); auto gap = is_row_layout() ? computed_values.column_gap() : computed_values.row_gap(); return gap.to_px(flex_container(), inner_main_size(m_flex_container_state)); } CSSPixels FlexFormattingContext::cross_gap() const { auto const& computed_values = flex_container().computed_values(); auto gap = is_row_layout() ? computed_values.row_gap() : computed_values.column_gap(); return gap.to_px(flex_container(), inner_cross_size(m_flex_container_state)); } }