/* * Copyright (c) 2021-2023, Andrew Kaster * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace DeviceTree { #ifdef KERNEL # define warnln dbgln # define outln dbgln #endif bool validate_flattened_device_tree(FlattenedDeviceTreeHeader const& header, ReadonlyBytes raw_device_tree, Verbose verbose) { if (header.magic != 0xD00DFEEDU) { if (verbose == Verbose::Yes) warnln("FDT Header has invalid magic value {:#08x}. Are you sure it's a flattened device tree?", header.magic); return false; } if ((header.off_mem_rsvmap & ~0x7) != header.off_mem_rsvmap) { if (verbose == Verbose::Yes) warnln("FDT Header's MemoryReservationBlock is not 8 byte aligned! Offset: {:#08x}", header.off_mem_rsvmap); return false; } if ((header.off_dt_struct & ~0x3) != header.off_dt_struct) { if (verbose == Verbose::Yes) warnln("FDT Header's StructureBlock is not 4 byte aligned! Offset: {:#08x}", header.off_dt_struct); return false; } if (header.totalsize != raw_device_tree.size()) { if (verbose == Verbose::Yes) warnln("FDT Header total size mismatch: {}, expected {}!", header.totalsize, raw_device_tree.size()); return false; } if (header.off_dt_struct > raw_device_tree.size()) { if (verbose == Verbose::Yes) warnln("FDT Header reports larger StructureBlock offset than possible: {} but total size is {}!", header.off_dt_struct, raw_device_tree.size()); return false; } if (header.off_dt_strings > raw_device_tree.size()) { if (verbose == Verbose::Yes) warnln("FDT Header reports larger StringsBlock offset than possible: {} but total size is {}!", header.off_dt_strings, raw_device_tree.size()); return false; } if (header.off_mem_rsvmap > raw_device_tree.size()) { if (verbose == Verbose::Yes) warnln("FDT Header reports larger MemoryReservationBlock offset than possible: {} but total size is {}!", header.off_mem_rsvmap, raw_device_tree.size()); return false; } // Verify format is correct. Header --> MemoryReservation --> Structures --> Strings if (header.off_dt_strings <= header.off_dt_struct) { if (verbose == Verbose::Yes) warnln("FDT Header has invalid StringsBlock offset {}, must be after v (@ {})", header.off_dt_strings, header.off_dt_struct); return false; } if (header.off_dt_struct <= header.off_mem_rsvmap) { if (verbose == Verbose::Yes) warnln("FDT Header has invalid StructureBlock offset {}, must be after MemoryReservationBlock (@ {})", header.off_dt_struct, header.off_mem_rsvmap); return false; } if (header.version != 17) { if (verbose == Verbose::Yes) warnln("Expected FDT header version 17, got {}", header.version); return false; } if (header.last_comp_version != 16) { if (verbose == Verbose::Yes) warnln("Expected FDT header last compatible version 16, got {}", header.last_comp_version); return false; } auto* mem_reserve_block = reinterpret_cast(&raw_device_tree[header.off_mem_rsvmap]); u64 next_block_offset = header.off_mem_rsvmap + sizeof(FlattenedDeviceTreeReserveEntry); while ((next_block_offset < header.off_dt_struct) && (*mem_reserve_block != FlattenedDeviceTreeReserveEntry {})) { ++mem_reserve_block; next_block_offset += sizeof(FlattenedDeviceTreeReserveEntry); } if (next_block_offset >= header.off_dt_strings) { if (verbose == Verbose::Yes) warnln("FDT malformed, MemoryReservationBlock spill into StructureBlock section!"); return false; } // check for overlap. Overflow not possible b/c the fields are u32 u64 structure_block_size = header.off_dt_struct + header.size_dt_struct; if ((structure_block_size > header.off_dt_strings) || (structure_block_size > raw_device_tree.size())) { if (verbose == Verbose::Yes) warnln("FDT Header reports invalid StructureBlock block size: {} is too large given StringsBlock offset {} and total size {}", structure_block_size, header.off_dt_strings, raw_device_tree.size()); return false; } u64 strings_block_size = header.off_dt_strings + header.size_dt_strings; if (strings_block_size > raw_device_tree.size()) { if (verbose == Verbose::Yes) warnln("FDT Header reports invalid StringsBlock size: {} is too large given total size {}", strings_block_size, raw_device_tree.size()); return false; } return true; } ErrorOr dump(FlattenedDeviceTreeHeader const& header, ReadonlyBytes raw_device_tree) { outln("/dts-v1/;"); outln("// magic: {:#08x}", header.magic); outln("// totalsize: {:#08x} ({})", header.totalsize, header.totalsize); outln("// off_dt_struct: {:#x}", header.off_dt_struct); outln("// off_dt_strings: {:#x}", header.off_dt_strings); outln("// off_mem_rsvmap: {:#x}", header.off_mem_rsvmap); outln("// version: {}", header.version); outln("// last_comp_version: {}", header.last_comp_version); outln("// boot_cpuid_phys: {:#x}", header.boot_cpuid_phys); outln("// size_dt_strings: {:#x}", header.size_dt_strings); outln("// size_dt_struct: {:#x}", header.size_dt_struct); if (!validate_flattened_device_tree(header, raw_device_tree, Verbose::Yes)) return Error::from_errno(EINVAL); // Now that we know the device tree is valid, print out the rest of the information auto const* mem_reserve_block = reinterpret_cast(&raw_device_tree[header.off_mem_rsvmap]); u64 next_block_offset = header.off_mem_rsvmap + sizeof(FlattenedDeviceTreeReserveEntry); while ((next_block_offset < header.off_dt_struct) && (*mem_reserve_block != FlattenedDeviceTreeReserveEntry {})) { outln("/memreserve/ {:#08x} {:#08x};", mem_reserve_block->address, mem_reserve_block->size); ++mem_reserve_block; next_block_offset += sizeof(FlattenedDeviceTreeReserveEntry); } return dump_flattened_device_tree_structure(header, raw_device_tree); } ErrorOr dump_flattened_device_tree_structure(FlattenedDeviceTreeHeader const& header, ReadonlyBytes raw_device_tree) { u8 indent = 0; DeviceTreeCallbacks callbacks = { .on_node_begin = [&](StringView token_name) -> ErrorOr { // Root Entry: if (indent == 0) outln("/ {{"); else outln("{: >{}}{} {{", ""sv, indent * 2, token_name); ++indent; return IterationDecision::Continue; }, .on_node_end = [&](StringView) -> ErrorOr { --indent; outln("{: >{}}}};", ""sv, indent * 2); return IterationDecision::Continue; }, .on_property = [&](StringView property_name, ReadonlyBytes property_value) -> ErrorOr { // Note: We want to figure out if the value is a string, a stringlist, a number or something unprintable. // In reality, the entity retrieving the value needs to know if it's a u32, u64, string, stringlist, or "property-encoded-value" a priori bool had_valid_character = false; bool const is_print = all_of(property_value, [&had_valid_character](char c) -> bool { if (AK::is_ascii_printable(c)) { had_valid_character = true; return true; } if (had_valid_character) { had_valid_character = false; return c == 0; } return false; }); if (property_value.size() == 0) { outln("{: >{}}{};", ""sv, indent * 2, property_name); } else if (is_print) { StringView property_as_string { property_value }; StringBuilder property; TRY(property.try_appendff("{: >{}}{} = ", ""sv, indent * 2, property_name)); TRY(property.try_join(", "sv, property_as_string.split_view('\00'), "\"{}\""sv)); outln("{};", property.string_view()); } else { StringBuilder property; if (property_value.size() % 4 != 0) { // This is the best hint we can use, that we are given an array // without looking at the schema of the current tree node TRY(property.try_appendff("{: >{}}{} = [", ""sv, indent * 2, property_name)); TRY(property.try_join(' ', property_value, "{:02x}"sv)); outln("{}];", property.string_view()); } else { TRY(property.try_appendff("{: >{}}{} = <", ""sv, indent * 2, property_name)); auto value_stream = FixedMemoryStream(property_value); bool first_value = true; while (!value_stream.is_eof()) { if (first_value) property.appendff("{:#08x}", TRY(value_stream.read_value>())); else property.appendff(" {:#08x}", TRY(value_stream.read_value>())); first_value = false; } outln("{}>;", property.string_view()); } } return IterationDecision::Continue; }, .on_noop = []() -> ErrorOr { return IterationDecision::Continue; }, .on_end = []() -> ErrorOr { return {}; } }; return walk_device_tree(header, raw_device_tree, move(callbacks)); } } // namespace DeviceTree