/* * Copyright (c) 2023, Aliaksandr Kalenik * Copyright (c) 2022-2023, Martin Falisse * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace Web::Layout { static CSSPixels gap_to_px(Variant const& gap, Layout::Node const& grid_container, CSSPixels reference_value) { return gap.visit( [](CSS::NormalGap) { return CSSPixels(0); }, [&](auto const& gap) { return gap.to_px(grid_container, reference_value); }); } static Alignment to_alignment(CSS::JustifyContent value) { switch (value) { case CSS::JustifyContent::Left: return Alignment::Start; case CSS::JustifyContent::Right: return Alignment::End; case CSS::JustifyContent::FlexStart: case CSS::JustifyContent::Start: return Alignment::Start; case CSS::JustifyContent::FlexEnd: case CSS::JustifyContent::End: return Alignment::End; case CSS::JustifyContent::Center: return Alignment::Center; case CSS::JustifyContent::SpaceBetween: return Alignment::SpaceBetween; case CSS::JustifyContent::SpaceAround: return Alignment::SpaceAround; case CSS::JustifyContent::SpaceEvenly: return Alignment::SpaceEvenly; case CSS::JustifyContent::Stretch: return Alignment::Stretch; case CSS::JustifyContent::Normal: return Alignment::Normal; default: VERIFY_NOT_REACHED(); } } static Alignment to_alignment(CSS::AlignContent value) { switch (value) { case CSS::AlignContent::Start: return Alignment::Start; case CSS::AlignContent::End: return Alignment::End; case CSS::AlignContent::Center: return Alignment::Center; case CSS::AlignContent::SpaceBetween: return Alignment::SpaceBetween; case CSS::AlignContent::SpaceAround: return Alignment::SpaceAround; case CSS::AlignContent::SpaceEvenly: return Alignment::SpaceEvenly; case CSS::AlignContent::Stretch: return Alignment::Stretch; case CSS::AlignContent::Normal: return Alignment::Normal; case CSS::AlignContent::FlexStart: return Alignment::Start; case CSS::AlignContent::FlexEnd: return Alignment::End; default: VERIFY_NOT_REACHED(); } } GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_from_definition(CSS::ExplicitGridTrack const& definition) { // NOTE: repeat() is expected to be expanded beforehand. VERIFY(!definition.is_repeat()); if (definition.is_fit_content()) { return GridTrack { .min_track_sizing_function = CSS::GridSize::make_auto(), .max_track_sizing_function = definition.fit_content().max_grid_size(), }; } if (definition.is_minmax()) { return GridTrack { .min_track_sizing_function = definition.minmax().min_grid_size(), .max_track_sizing_function = definition.minmax().max_grid_size(), }; } // https://drafts.csswg.org/css-grid-2/#algo-terms // min track sizing function: // If the track was sized with a minmax() function, this is the first argument to that function. // If the track was sized with a value or fit-content() function, auto. Otherwise, the track’s sizing function. auto min_track_sizing_function = definition.grid_size(); if (min_track_sizing_function.is_flexible_length()) { min_track_sizing_function = CSS::GridSize::make_auto(); } auto max_track_sizing_function = definition.grid_size(); return GridTrack { .min_track_sizing_function = min_track_sizing_function, .max_track_sizing_function = max_track_sizing_function, }; } GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_auto() { return GridTrack { .min_track_sizing_function = CSS::GridSize::make_auto(), .max_track_sizing_function = CSS::GridSize::make_auto(), }; } GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_gap(CSSPixels size) { return GridTrack { .min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)), .max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)), .base_size = size, .is_gap = true, }; } GridFormattingContext::GridFormattingContext(LayoutState& state, LayoutMode layout_mode, Box const& grid_container, FormattingContext* parent) : FormattingContext(Type::Grid, layout_mode, state, grid_container, parent) { } GridFormattingContext::~GridFormattingContext() = default; CSSPixels GridFormattingContext::resolve_definite_track_size(CSS::GridSize const& grid_size, AvailableSpace const& available_space) { VERIFY(grid_size.is_definite()); switch (grid_size.type()) { case CSS::GridSize::Type::LengthPercentage: { if (!grid_size.length_percentage().is_auto()) { return grid_size.css_size().to_px(grid_container(), available_space.width.to_px_or_zero()); } break; } default: VERIFY_NOT_REACHED(); } return 0; } int GridFormattingContext::count_of_repeated_auto_fill_or_fit_tracks(GridDimension dimension, CSS::ExplicitGridTrack const& repeated_track) { // https://www.w3.org/TR/css-grid-2/#auto-repeat // 7.2.3.2. Repeat-to-fill: auto-fill and auto-fit repetitions // On a subgridded axis, the auto-fill keyword is only valid once per , and repeats // enough times for the name list to match the subgrid’s specified grid span (falling back to 0 if // the span is already fulfilled). // Otherwise on a standalone axis, when auto-fill is given as the repetition number // If the grid container has a definite size or max size in the relevant axis, then the number of // repetitions is the largest possible positive integer that does not cause the grid to overflow the // content box of its grid container auto const& grid_computed_values = grid_container().computed_values(); CSSPixels size_of_repeated_tracks = 0; // (treating each track as its max track sizing function if that is definite or its minimum track sizing // function otherwise, flooring the max track sizing function by the min track sizing function if both // are definite, and taking gap into account) auto const& repeat_track_list = repeated_track.repeat().grid_track_size_list().track_list(); for (auto const& explicit_grid_track : repeat_track_list) { auto const& track_sizing_function = explicit_grid_track; CSSPixels track_size = 0; if (track_sizing_function.is_minmax()) { auto const& min_size = track_sizing_function.minmax().min_grid_size(); auto const& max_size = track_sizing_function.minmax().max_grid_size(); if (max_size.is_definite()) { track_size = resolve_definite_track_size(max_size, *m_available_space); if (min_size.is_definite()) track_size = min(track_size, resolve_definite_track_size(min_size, *m_available_space)); } else if (min_size.is_definite()) { track_size = resolve_definite_track_size(min_size, *m_available_space); } else { VERIFY_NOT_REACHED(); } } else { track_size = resolve_definite_track_size(track_sizing_function.grid_size(), *m_available_space); } size_of_repeated_tracks += track_size; } if (size_of_repeated_tracks == 0) return 0; auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; auto free_space = get_free_space(*m_available_space, dimension).to_px_or_zero(); auto const& gap = dimension == GridDimension::Column ? grid_computed_values.column_gap() : grid_computed_values.row_gap(); auto gap_px = gap_to_px(gap, grid_container(), available_size.to_px_or_zero()); auto size_of_repeated_tracks_with_gap = size_of_repeated_tracks + repeat_track_list.size() * gap_px; // If any number of repetitions would overflow, then 1 repetition. if (free_space <= size_of_repeated_tracks_with_gap) { return 1; } // Otherwise, if the grid container has a definite min size in the relevant axis, the number of repetitions is the // smallest possible positive integer that fulfills that minimum requirement else if (available_size.is_definite()) { // NOTE: Gap size is added to free space to compensate for the fact that the last track does not have a gap auto number_of_repetitions = ((free_space + gap_px) / size_of_repeated_tracks_with_gap).to_int(); return max(1, number_of_repetitions); } // Otherwise, the specified track list repeats only once. return 1; // For the purpose of finding the number of auto-repeated tracks in a standalone axis, the UA must // floor the track size to a UA-specified value to avoid division by zero. It is suggested that this // floor be 1px. } GridFormattingContext::PlacementPosition GridFormattingContext::resolve_grid_position(Box const& child_box, GridDimension const dimension) { auto const& computed_values = child_box.computed_values(); auto const& placement_start = dimension == GridDimension::Row ? computed_values.grid_row_start() : computed_values.grid_column_start(); auto const& placement_end = dimension == GridDimension::Row ? computed_values.grid_row_end() : computed_values.grid_column_end(); PlacementPosition result; if (placement_start.has_line_number() && placement_start.line_number() > 0) result.start = placement_start.line_number() - 1; else if (placement_start.has_line_number()) { auto explicit_line_count = dimension == GridDimension::Row ? m_explicit_rows_line_count : m_explicit_columns_line_count; result.start = explicit_line_count + placement_start.line_number(); } if (placement_end.has_line_number()) result.end = placement_end.line_number() - 1; if (result.end < 0) { if (dimension == GridDimension::Row) result.end = m_occupation_grid.row_count() + result.end + 2; else result.end = m_occupation_grid.column_count() + result.end + 2; } if (placement_start.has_line_number() && placement_end.is_span()) result.span = placement_end.span(); if (placement_end.has_line_number() && placement_start.is_span()) { result.span = placement_start.span(); result.start = result.end - result.span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1 if (result.start < 0) result.start = 0; } if (placement_end.has_identifier()) { auto area_end_line_name = MUST(String::formatted("{}-end", placement_end.identifier())); if (auto area_end_line_index = get_line_index_by_line_name(dimension, area_end_line_name); area_end_line_index.has_value()) { result.end = area_end_line_index.value(); } else if (auto line_name_index = get_line_index_by_line_name(dimension, placement_end.identifier()); line_name_index.has_value()) { result.end = line_name_index.value(); } else { result.end = 1; } result.start = result.end - 1; } if (placement_start.has_identifier()) { auto area_start_line_name = MUST(String::formatted("{}-start", placement_start.identifier())); if (auto area_start_line_index = get_line_index_by_line_name(dimension, area_start_line_name); area_start_line_index.has_value()) { result.start = area_start_line_index.value(); } else if (auto line_name_index = get_line_index_by_line_name(dimension, placement_start.identifier()); line_name_index.has_value()) { result.start = line_name_index.value(); } else { result.start = 0; } } if (placement_start.is_positioned() && placement_end.is_positioned()) { if (result.start > result.end) swap(result.start, result.end); if (result.start != result.end) result.span = result.end - result.start; } // FIXME: Have yet to find the spec for this. if (!placement_start.is_positioned() && placement_end.is_positioned() && result.end == 0) result.start = 0; // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (placement_start.is_span() && placement_end.is_span()) result.span = placement_start.span(); return result; } void GridFormattingContext::place_item_with_row_and_column_position(Box const& child_box) { auto row_placement_position = resolve_grid_position(child_box, GridDimension::Row); auto column_placement_position = resolve_grid_position(child_box, GridDimension::Column); auto row_start = row_placement_position.start; auto row_span = row_placement_position.span; auto column_start = column_placement_position.start; auto column_span = column_placement_position.span; record_grid_placement(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::place_item_with_row_position(Box const& child_box) { auto placement_position = resolve_grid_position(child_box, GridDimension::Row); auto row_start = placement_position.start; size_t row_span = placement_position.span; auto const& grid_column_start = child_box.computed_values().grid_column_start(); int column_start = 0; size_t column_span = grid_column_start.is_span() ? grid_column_start.span() : 1; bool found_available_column = false; for (size_t column_index = column_start; column_index < m_occupation_grid.column_count(); column_index++) { if (!m_occupation_grid.is_occupied(column_index, row_start)) { found_available_column = true; column_start = column_index; break; } } if (!found_available_column) { column_start = m_occupation_grid.column_count(); } record_grid_placement(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::place_item_with_column_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { auto placement_position = resolve_grid_position(child_box, GridDimension::Column); auto column_start = placement_position.start; size_t column_span = placement_position.span; auto const& grid_row_start = child_box.computed_values().grid_row_start(); size_t row_span = grid_row_start.is_span() ? grid_row_start.span() : 1; // 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is // less than the previous column position of the cursor, increment the row position by 1. if (column_start < auto_placement_cursor_x) auto_placement_cursor_y++; auto_placement_cursor_x = column_start; // 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not // overlap any occupied grid cells (creating new rows in the implicit grid as necessary). while (true) { if (!m_occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) { break; } auto_placement_cursor_y++; } // 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end // line according to its span from that position. record_grid_placement(GridItem { .box = child_box, .row = auto_placement_cursor_y, .row_span = row_span, .column = column_start, .column_span = column_span }); } FoundUnoccupiedPlace OccupationGrid::find_unoccupied_place(GridDimension dimension, int& column_index, int& row_index, int column_span, int row_span) const { if (dimension == GridDimension::Column) { while (row_index <= max_row_index()) { while (column_index <= max_column_index()) { auto enough_span_for_span = column_index + column_span - 1 <= max_column_index(); if (enough_span_for_span && !is_occupied(column_index, row_index)) return FoundUnoccupiedPlace::Yes; column_index++; } row_index++; column_index = min_column_index(); } } else { while (column_index <= max_column_index()) { while (row_index <= max_row_index()) { auto enough_span_for_span = row_index + row_span - 1 <= max_row_index(); if (enough_span_for_span && !is_occupied(column_index, row_index)) return FoundUnoccupiedPlace::Yes; row_index++; } column_index++; row_index = min_row_index(); } } return FoundUnoccupiedPlace::No; } void GridFormattingContext::place_item_with_no_declared_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { auto const& computed_values = child_box.computed_values(); auto const& grid_row_start = computed_values.grid_row_start(); auto const& grid_row_end = computed_values.grid_row_end(); auto const& grid_column_start = computed_values.grid_column_start(); auto const& grid_column_end = computed_values.grid_column_end(); auto column_start = 0; size_t column_span = 1; if (grid_column_start.is_span()) column_span = grid_column_start.span(); else if (grid_column_end.is_span()) column_span = grid_column_end.span(); auto row_start = 0; size_t row_span = 1; if (grid_row_start.is_span()) row_span = grid_row_start.span(); else if (grid_row_end.is_span()) row_span = grid_row_end.span(); auto const& auto_flow = grid_container().computed_values().grid_auto_flow(); auto dimension = auto_flow.row ? GridDimension::Column : GridDimension::Row; // 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid // area does not overlap any occupied grid cells, or the cursor's column position, plus the item's // column span, overflow the number of columns in the implicit grid, as determined earlier in this // algorithm. auto found_unoccupied_area = m_occupation_grid.find_unoccupied_place(dimension, auto_placement_cursor_x, auto_placement_cursor_y, column_span, row_span); // 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start // and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's // row position (creating new rows in the implicit grid as necessary), set its column position to the // start-most column line in the implicit grid, and return to the previous step. if (found_unoccupied_area == FoundUnoccupiedPlace::Yes) { column_start = auto_placement_cursor_x; row_start = auto_placement_cursor_y; auto_placement_cursor_x += column_span - 1; auto_placement_cursor_y += row_span - 1; if (dimension == GridDimension::Column) { auto_placement_cursor_x++; auto_placement_cursor_y = m_occupation_grid.min_row_index(); } else { auto_placement_cursor_y++; auto_placement_cursor_x = m_occupation_grid.min_column_index(); } } else { column_start = auto_placement_cursor_x; row_start = auto_placement_cursor_y; auto_placement_cursor_x += column_span - 1; auto_placement_cursor_y += row_span - 1; } record_grid_placement(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::record_grid_placement(GridItem grid_item) { m_occupation_grid.set_occupied(grid_item.column.value(), grid_item.column.value() + grid_item.column_span.value(), grid_item.row.value(), grid_item.row.value() + grid_item.row_span.value()); m_grid_items.append(grid_item); } void GridFormattingContext::initialize_grid_tracks_from_definition(GridDimension dimension) { auto const& grid_computed_values = grid_container().computed_values(); auto const& tracks_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns().track_list() : grid_computed_values.grid_template_rows().track_list(); auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; for (auto const& track_definition : tracks_definition) { int repeat_count = 1; if (track_definition.is_repeat()) { if (track_definition.repeat().is_auto_fill() || track_definition.repeat().is_auto_fit()) repeat_count = count_of_repeated_auto_fill_or_fit_tracks(dimension, track_definition); else repeat_count = track_definition.repeat().repeat_count(); } for (auto _ = 0; _ < repeat_count; _++) { switch (track_definition.type()) { case CSS::ExplicitGridTrack::Type::Default: case CSS::ExplicitGridTrack::Type::FitContent: case CSS::ExplicitGridTrack::Type::MinMax: tracks.append(GridTrack::create_from_definition(track_definition)); break; case CSS::ExplicitGridTrack::Type::Repeat: for (auto& explicit_grid_track : track_definition.repeat().grid_track_size_list().track_list()) { tracks.append(GridTrack::create_from_definition(explicit_grid_track)); } break; default: VERIFY_NOT_REACHED(); } } } } void GridFormattingContext::initialize_grid_tracks_for_columns_and_rows() { auto const& grid_computed_values = grid_container().computed_values(); auto const& grid_auto_columns = grid_computed_values.grid_auto_columns().track_list(); size_t implicit_column_index = 0; // NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks auto negative_index_implied_column_tracks_count = abs(m_occupation_grid.min_column_index()); for (int column_index = 0; column_index < negative_index_implied_column_tracks_count; column_index++) { if (grid_auto_columns.size() > 0) { auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()]; m_grid_columns.append(GridTrack::create_from_definition(definition)); } else { m_grid_columns.append(GridTrack::create_auto()); } implicit_column_index++; } initialize_grid_tracks_from_definition(GridDimension::Column); for (size_t column_index = m_grid_columns.size(); column_index < m_occupation_grid.column_count(); column_index++) { if (grid_auto_columns.size() > 0) { auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()]; m_grid_columns.append(GridTrack::create_from_definition(definition)); } else { m_grid_columns.append(GridTrack::create_auto()); } implicit_column_index++; } auto const& grid_auto_rows = grid_computed_values.grid_auto_rows().track_list(); size_t implicit_row_index = 0; // NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks auto negative_index_implied_row_tracks_count = abs(m_occupation_grid.min_row_index()); for (int row_index = 0; row_index < negative_index_implied_row_tracks_count; row_index++) { if (grid_auto_rows.size() > 0) { auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()]; m_grid_rows.append(GridTrack::create_from_definition(definition)); } else { m_grid_rows.append(GridTrack::create_auto()); } implicit_row_index++; } initialize_grid_tracks_from_definition(GridDimension::Row); for (size_t row_index = m_grid_rows.size(); row_index < m_occupation_grid.row_count(); row_index++) { if (grid_auto_rows.size() > 0) { auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()]; m_grid_rows.append(GridTrack::create_from_definition(definition)); } else { m_grid_rows.append(GridTrack::create_auto()); } implicit_row_index++; } } void GridFormattingContext::initialize_gap_tracks(AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-2/#gutters // 11.1. Gutters: the row-gap, column-gap, and gap properties // For the purpose of track sizing, each gutter is treated as an extra, empty, fixed-size track of // the specified size, which is spanned by any grid items that span across its corresponding grid // line. if (m_grid_columns.size() > 0) { CSSPixels column_gap_width = 0; if (!grid_container().computed_values().column_gap().has()) { column_gap_width = gap_to_px(grid_container().computed_values().column_gap(), grid_container(), available_space.width.to_px_or_zero()); } m_column_gap_tracks.ensure_capacity(m_grid_columns.size() - 1); for (size_t column_index = 0; column_index < m_grid_columns.size(); column_index++) { m_grid_columns_and_gaps.append(m_grid_columns[column_index]); if (column_index != m_grid_columns.size() - 1) { m_column_gap_tracks.append(GridTrack::create_gap(column_gap_width)); m_grid_columns_and_gaps.append(m_column_gap_tracks.last()); } } } if (m_grid_rows.size() > 0) { CSSPixels row_gap_height = 0; if (!grid_container().computed_values().row_gap().has()) { row_gap_height = gap_to_px(grid_container().computed_values().row_gap(), grid_container(), available_space.height.to_px_or_zero()); } m_row_gap_tracks.ensure_capacity(m_grid_rows.size() - 1); for (size_t row_index = 0; row_index < m_grid_rows.size(); row_index++) { m_grid_rows_and_gaps.append(m_grid_rows[row_index]); if (row_index != m_grid_rows.size() - 1) { m_row_gap_tracks.append(GridTrack::create_gap(row_gap_height)); m_grid_rows_and_gaps.append(m_row_gap_tracks.last()); } } } } void GridFormattingContext::initialize_track_sizes(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-init // 12.4. Initialize Track Sizes // Initialize each track’s base size and growth limit. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; for (auto& track : tracks_and_gaps) { if (track.is_gap) continue; if (track.min_track_sizing_function.is_fixed(available_size)) { track.base_size = track.min_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero()); } else if (track.min_track_sizing_function.is_intrinsic(available_size)) { track.base_size = 0; } if (track.max_track_sizing_function.is_fixed(available_size)) { track.growth_limit = track.max_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero()); } else if (track.max_track_sizing_function.is_flexible_length()) { track.growth_limit = {}; } else if (track.max_track_sizing_function.is_intrinsic(available_size)) { track.growth_limit = {}; } else { VERIFY_NOT_REACHED(); } // In all cases, if the growth limit is less than the base size, increase the growth limit to match // the base size. if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } } void GridFormattingContext::resolve_intrinsic_track_sizes(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-content // 12.5. Resolve Intrinsic Track Sizes // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those // sizes based on items that are contained wholly within a single track. Then it gradually adds in // the space requirements of items that span multiple tracks, evenly distributing the extra space // across those tracks insofar as possible. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment. // 2. Size tracks to fit non-spanning items: increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(dimension, 1); // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the // items with a span of 2 that do not span a track with a flexible sizing function. // Repeat incrementally for items with greater spans until all items have been considered. size_t max_item_span = 1; for (auto& item : m_grid_items) max_item_span = max(item.span(dimension), max_item_span); for (size_t span = 2; span <= max_item_span; span++) increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(dimension, span); // 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous // step instead considering (together, rather than grouped by span size) all items that do span a // track with a flexible sizing function while increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(dimension); // 5. If any track still has an infinite growth limit (because, for example, it had no items placed in // it or it is a flexible track), set its growth limit to its base size. for (auto& track : tracks_and_gaps) { if (!track.growth_limit.has_value()) track.growth_limit = track.base_size; } } template void GridFormattingContext::distribute_extra_space_across_spanned_tracks_base_size(GridDimension dimension, CSSPixels item_size_contribution, SpaceDistributionPhase phase, Vector& spanned_tracks, Match matcher) { auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; Vector affected_tracks; for (auto& track : spanned_tracks) { if (matcher(track)) affected_tracks.append(track); } if (affected_tracks.size() == 0) return; for (auto& track : affected_tracks) track.item_incurred_increase = 0; // 1. Find the space to distribute: CSSPixels spanned_tracks_sizes_sum = 0; for (auto& track : spanned_tracks) spanned_tracks_sizes_sum += track.base_size; // Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s // remaining size contribution. auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum); // 2. Distribute space up to limits: while (extra_space > 0) { auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.base_size_frozen; }); if (all_frozen) break; // Find the item-incurred increase for each spanned track with an affected size by: distributing the space // equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred // increase reaches its limit CSSPixels increase_per_track = max(CSSPixels::smallest_positive_value(), extra_space / affected_tracks.size()); for (auto& track : affected_tracks) { if (track.base_size_frozen) continue; auto increase = min(increase_per_track, extra_space); if (track.growth_limit.has_value()) { auto maximum_increase = track.growth_limit.value() - track.base_size; if (track.item_incurred_increase + increase >= maximum_increase) { track.base_size_frozen = true; increase = maximum_increase - track.item_incurred_increase; } } track.item_incurred_increase += increase; extra_space -= increase; } } // 3. Distribute space beyond limits if (extra_space > 0) { Vector tracks_to_grow_beyond_limits; // If space remains after all tracks are frozen, unfreeze and continue to // distribute space to the item-incurred increase of... if (phase == SpaceDistributionPhase::AccommodateMinimumContribution || phase == SpaceDistributionPhase::AccommodateMinContentContribution) { // when accommodating minimum contributions or accommodating min-content contributions: any affected track // that happens to also have an intrinsic max track sizing function for (auto& track : affected_tracks) { if (track.max_track_sizing_function.is_intrinsic(available_size)) tracks_to_grow_beyond_limits.append(track); } // if there are no such tracks, then all affected tracks. if (tracks_to_grow_beyond_limits.size() == 0) tracks_to_grow_beyond_limits = affected_tracks; } // FIXME: when accommodating max-content contributions: any affected track that happens to also have a // max-content max track sizing function; if there are no such tracks, then all affected tracks. CSSPixels increase_per_track = extra_space / affected_tracks.size(); for (auto& track : affected_tracks) { auto increase = min(increase_per_track, extra_space); track.item_incurred_increase += increase; extra_space -= increase; } } // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase // set the track’s planned increase to that value. for (auto& track : affected_tracks) { if (track.item_incurred_increase > track.planned_increase) track.planned_increase = track.item_incurred_increase; } } template void GridFormattingContext::distribute_extra_space_across_spanned_tracks_growth_limit(CSSPixels item_size_contribution, Vector& spanned_tracks, Match matcher) { Vector affected_tracks; for (auto& track : spanned_tracks) { if (matcher(track)) affected_tracks.append(track); } for (auto& track : affected_tracks) track.item_incurred_increase = 0; if (affected_tracks.size() == 0) return; // 1. Find the space to distribute: CSSPixels spanned_tracks_sizes_sum = 0; for (auto& track : spanned_tracks) { if (track.growth_limit.has_value()) { spanned_tracks_sizes_sum += track.growth_limit.value(); } else { spanned_tracks_sizes_sum += track.base_size; } } // Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s // remaining size contribution. auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum); // 2. Distribute space up to limits: while (extra_space > 0) { auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.growth_limit_frozen; }); if (all_frozen) break; // Find the item-incurred increase for each spanned track with an affected size by: distributing the space // equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred // increase reaches its limit CSSPixels increase_per_track = max(CSSPixels::smallest_positive_value(), extra_space / affected_tracks.size()); for (auto& track : affected_tracks) { if (track.growth_limit_frozen) continue; auto increase = min(increase_per_track, extra_space); // For growth limits, the limit is infinity if it is marked as infinitely growable, and equal to the // growth limit otherwise. if (!track.infinitely_growable && track.growth_limit.has_value()) { auto maximum_increase = track.growth_limit.value() - track.base_size; if (track.item_incurred_increase + increase >= maximum_increase) { track.growth_limit_frozen = true; increase = maximum_increase - track.item_incurred_increase; } } track.item_incurred_increase += increase; extra_space -= increase; } } // FIXME: 3. Distribute space beyond limits // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase // set the track’s planned increase to that value. for (auto& track : spanned_tracks) { if (track.item_incurred_increase > track.planned_increase) track.planned_increase = track.item_incurred_increase; } } void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(GridDimension const dimension, size_t span) { auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; for (auto& item : m_grid_items) { auto const item_span = item.span(dimension); if (item_span != span) continue; Vector spanned_tracks; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); }); auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) { return track.max_track_sizing_function.is_flexible_length(); }); if (item_spans_tracks_with_flexible_sizing_function) continue; // 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. auto item_size_contribution = [&] { // If the grid container is being sized under a min- or max-content constraint, use the items’ limited // min-content contributions in place of their minimum contributions here. if (available_size.is_intrinsic_sizing_constraint()) return calculate_limited_min_content_contribution(item, dimension); return calculate_minimum_contribution(item, dimension); }(); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_size_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_intrinsic(available_size); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 2. For content-based minimums: Next continue to increase the base size of tracks with a min track // sizing function of min-content or max-content by distributing extra space as needed to account for // these items' min-content contributions. auto item_min_content_contribution = calculate_min_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_min_content_contribution, SpaceDistributionPhase::AccommodateMinContentContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_min_content() || track.min_track_sizing_function.is_max_content(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 3. For max-content minimums: Next, if the grid container is being sized under a max-content constraint, // continue to increase the base size of tracks with a min track sizing function of auto or max-content by // distributing extra space as needed to account for these items' limited max-content contributions. if (available_size.is_max_content()) { auto item_limited_max_content_contribution = calculate_limited_max_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_limited_max_content_contribution, SpaceDistributionPhase::AccommodateMaxContentContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_auto(available_size) || track.min_track_sizing_function.is_max_content(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } } // 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to // match its base size. for (auto& track : tracks) { if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } // 5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track sizing distribute_extra_space_across_spanned_tracks_growth_limit(item_min_content_contribution, spanned_tracks, [&](GridTrack const& track) { return track.max_track_sizing_function.is_intrinsic(available_size); }); for (auto& track : spanned_tracks) { if (!track.growth_limit.has_value()) { // If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase. track.growth_limit = track.base_size + track.planned_increase; // Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable // for the next step. track.infinitely_growable = true; } else { track.growth_limit.value() += track.planned_increase; } track.planned_increase = 0; } // 6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track // sizing function of max-content by distributing extra space as needed to account for these items' max- // content contributions. However, limit the growth of any fit-content() tracks by their fit-content() argument. auto item_max_content_contribution = calculate_max_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_growth_limit(item_max_content_contribution, spanned_tracks, [&](GridTrack const& track) { return track.max_track_sizing_function.is_max_content() || track.max_track_sizing_function.is_auto(available_size) || track.max_track_sizing_function.is_fit_content(); }); for (auto& track : spanned_tracks) { if (track.max_track_sizing_function.is_fit_content()) { track.growth_limit.value() += track.planned_increase; if (track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; if (available_size.is_definite()) { auto fit_content_limit = track.max_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero()); if (track.growth_limit.value() > fit_content_limit) track.growth_limit = fit_content_limit; } } else if (!track.growth_limit.has_value()) { // If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase. track.growth_limit = track.base_size + track.planned_increase; } else { track.growth_limit.value() += track.planned_increase; } track.planned_increase = 0; } } } void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(GridDimension const dimension) { auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; for (auto& item : m_grid_items) { Vector spanned_tracks; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); }); auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) { return track.max_track_sizing_function.is_flexible_length(); }); if (!item_spans_tracks_with_flexible_sizing_function) continue; // 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. auto item_minimum_contribution = calculate_minimum_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_minimum_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) { return track.max_track_sizing_function.is_flexible_length(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to // match its base size. for (auto& track : tracks) { if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } } } void GridFormattingContext::maximize_tracks_using_available_size(AvailableSpace const& available_space, GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-grow-tracks // 12.6. Maximize Tracks auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto get_free_space_px = [&]() -> CSSPixels { // For the purpose of this step: if sizing the grid container under a max-content constraint, the // free space is infinite; if sizing under a min-content constraint, the free space is zero. auto free_space = get_free_space(available_space, dimension); if (free_space.is_max_content() || free_space.is_indefinite()) { return CSSPixels::max(); } else if (free_space.is_min_content()) { return 0; } else { return free_space.to_px_or_zero(); } }; auto free_space_px = get_free_space_px(); // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed). while (free_space_px > 0) { auto free_space_to_distribute_per_track = free_space_px / tracks.size(); for (auto& track : tracks) { if (track.base_size_frozen) continue; VERIFY(track.growth_limit.has_value()); track.base_size = min(track.growth_limit.value(), track.base_size + free_space_to_distribute_per_track); } if (get_free_space_px() == free_space_px) break; free_space_px = get_free_space_px(); } } void GridFormattingContext::maximize_tracks(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-grow-tracks // 12.6. Maximize Tracks auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; Vector saved_base_sizes; for (auto& track : tracks) saved_base_sizes.append(track.base_size); maximize_tracks_using_available_size(*m_available_space, dimension); // If this would cause the grid to be larger than the grid container’s inner size as limited by its // max-width/height, then redo this step, treating the available grid space as equal to the grid // container’s inner size when it’s sized to its max-width/height. CSSPixels grid_container_inner_size = 0; for (auto& track : tracks) grid_container_inner_size += track.base_size; auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; auto const& computed_values = grid_container().computed_values(); auto should_treat_grid_container_maximum_size_as_none = [&] { if (dimension == GridDimension::Column) return should_treat_max_width_as_none(grid_container(), available_size); return !computed_values.max_height().is_auto(); }(); if (!should_treat_grid_container_maximum_size_as_none) { auto maximum_size = calculate_grid_container_maximum_size(dimension); if (grid_container_inner_size > maximum_size) { for (size_t i = 0; i < tracks.size(); i++) tracks[i].base_size = saved_base_sizes[i]; auto available_space_with_max_width = *m_available_space; if (dimension == GridDimension::Column) available_space_with_max_width.width = AvailableSize::make_definite(maximum_size); else available_space_with_max_width.height = AvailableSize::make_definite(maximum_size); maximize_tracks_using_available_size(available_space_with_max_width, dimension); } } } void GridFormattingContext::expand_flexible_tracks(GridDimension const dimension) { // https://drafts.csswg.org/css-grid/#algo-flex-tracks // 12.7. Expand Flexible Tracks // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding // the available space. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; // FIXME: This should idealy take a Span, as that is more idomatic, but Span does not yet support holding references auto find_the_size_of_an_fr = [&](Vector const& tracks, CSSPixels space_to_fill) -> CSSPixelFraction { // https://www.w3.org/TR/css-grid-2/#algo-find-fr-size auto treat_track_as_inflexiable = MUST(AK::Bitmap::create(tracks.size(), false)); do { // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. auto leftover_space = space_to_fill; for (auto track_index = 0u; track_index < tracks.size(); track_index++) { if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length()) { leftover_space -= tracks[track_index].base_size; } } // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. // If this value is less than 1, set it to 1 instead. CSSPixels flex_factor_sum = 0; for (auto track_index = 0u; track_index < tracks.size(); track_index++) { if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length()) continue; flex_factor_sum += CSSPixels::nearest_value_for(tracks[track_index].max_track_sizing_function.flex_factor()); } if (flex_factor_sum < 1) flex_factor_sum = 1; // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = leftover_space / flex_factor_sum; // 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the track’s // base size, restart this algorithm treating all such tracks as inflexible. bool need_to_restart = false; for (auto track_index = 0u; track_index < tracks.size(); track_index++) { if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length()) continue; auto scaled_fraction = CSSPixels::nearest_value_for(tracks[track_index].max_track_sizing_function.flex_factor()) * hypothetical_fr_size; if (scaled_fraction < tracks[track_index].base_size) { treat_track_as_inflexiable.set(track_index, true); need_to_restart = true; } } if (need_to_restart) continue; // 5. Return the hypothetical fr size. return hypothetical_fr_size; } while (true); VERIFY_NOT_REACHED(); }; // First, find the grid’s used flex fraction: auto flex_fraction = [&]() -> CSSPixelFraction { auto free_space = get_free_space(*m_available_space, dimension); // If the free space is zero or if sizing the grid container under a min-content constraint: if ((free_space.is_definite() && free_space.to_px_or_zero() == 0) || available_size.is_min_content()) { // The used flex fraction is zero. return 0; // Otherwise, if the free space is a definite length: } else if (free_space.is_definite()) { // The used flex fraction is the result of finding the size of an fr using all of the grid tracks and a space // to fill of the available grid space. return find_the_size_of_an_fr(tracks_and_gaps, available_size.to_px_or_zero()); } else { // Otherwise, if the free space is an indefinite length: // The used flex fraction is the maximum of: CSSPixelFraction result = 0; // For each flexible track, if the flexible track’s flex factor is greater than one, the result of dividing // the track’s base size by its flex factor; otherwise, the track’s base size. for (auto& track : tracks) { if (track.max_track_sizing_function.is_flexible_length()) { if (track.max_track_sizing_function.flex_factor() > 1) { result = max(result, track.base_size / CSSPixels::nearest_value_for(track.max_track_sizing_function.flex_factor())); } else { result = max(result, track.base_size / 1); } } } // For each grid item that crosses a flexible track, the result of finding the size of an fr using all the // grid tracks that the item crosses and a space to fill of the item’s max-content contribution. for (auto& item : m_grid_items) { Vector spanned_tracks; bool crosses_flexible_track = false; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); if (track.max_track_sizing_function.is_flexible_length()) crosses_flexible_track = true; }); if (crosses_flexible_track) result = max(result, find_the_size_of_an_fr(spanned_tracks, calculate_max_content_contribution(item, dimension))); } return result; } }(); // For each flexible track, if the product of the used flex fraction and the track’s flex factor is greater than // the track’s base size, set its base size to that product. for (auto& track : tracks_and_gaps) { if (track.max_track_sizing_function.is_flexible_length()) { auto scaled_fraction = CSSPixels::nearest_value_for(track.max_track_sizing_function.flex_factor()) * flex_fraction; if (scaled_fraction > track.base_size) { track.base_size = scaled_fraction; } } } } void GridFormattingContext::stretch_auto_tracks(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-stretch // 12.8. Stretch auto Tracks // This step expands tracks that have an auto max track sizing function by dividing any remaining positive, // definite free space equally amongst them. If the free space is indefinite, but the grid container has a // definite min-width/height, use that size to calculate the free space for this step instead. auto content_distribution_property_is_normal_or_stretch = false; if (dimension == GridDimension::Column) { auto const& justify_content = grid_container().computed_values().justify_content(); content_distribution_property_is_normal_or_stretch = justify_content == CSS::JustifyContent::Normal || justify_content == CSS::JustifyContent::Stretch; } else { auto const& align_content = grid_container().computed_values().align_content(); content_distribution_property_is_normal_or_stretch = align_content == CSS::AlignContent::Normal || align_content == CSS::AlignContent::Stretch; } if (!content_distribution_property_is_normal_or_stretch) return; auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; auto count_of_auto_max_sizing_tracks = 0; for (auto& track : tracks_and_gaps) { if (track.max_track_sizing_function.is_auto(available_size)) count_of_auto_max_sizing_tracks++; } if (count_of_auto_max_sizing_tracks == 0) return; CSSPixels remaining_space = get_free_space(*m_available_space, dimension).to_px_or_zero(); auto remaining_space_to_distribute_per_track = remaining_space / count_of_auto_max_sizing_tracks; for (auto& track : tracks_and_gaps) { if (!track.max_track_sizing_function.is_auto(available_size)) continue; track.base_size += remaining_space_to_distribute_per_track; } } void GridFormattingContext::run_track_sizing(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-track-sizing // 12.3. Track Sizing Algorithm // 1. Initialize Track Sizes initialize_track_sizes(dimension); // 2. Resolve Intrinsic Track Sizes resolve_intrinsic_track_sizes(dimension); // 3. Maximize Tracks maximize_tracks(dimension); // 4. Expand Flexible Tracks expand_flexible_tracks(dimension); // 5. Expand Stretched auto Tracks stretch_auto_tracks(dimension); // If calculating the layout of a grid item in this step depends on the available space in the block // axis, assume the available space that it would have if any row with a definite max track sizing // function had that size and all other rows were infinite. If both the grid container and all // tracks have definite sizes, also apply align-content to find the final effective size of any gaps // spanned by such items; otherwise ignore the effects of track alignment in this estimation. } void GridFormattingContext::build_grid_areas() { // https://www.w3.org/TR/css-grid-2/#grid-template-areas-property // If a named grid area spans multiple grid cells, but those cells do not form a single // filled-in rectangle, the declaration is invalid. auto const& rows = grid_container().computed_values().grid_template_areas(); HashMap grid_areas; auto find_area_rectangle = [&](size_t x_start, size_t y_start, String const& name) { bool invalid = false; size_t x_end = x_start; size_t y_end = y_start; while (x_end < rows[y_start].size() && rows[y_start][x_end] == name) x_end++; while (y_end < rows.size() && rows[y_end][x_start] == name) y_end++; for (size_t y = y_start; y < y_end; y++) { for (size_t x = x_start; x < x_end; x++) { if (rows[y][x] != name) { // If a named grid area spans multiple grid cells, but those cells do not form a single filled-in rectangle, the declaration is invalid. invalid = true; break; } } } grid_areas.set(name, { name, y_start, y_end, x_start, x_end, invalid }); }; for (size_t y = 0; y < rows.size(); y++) { for (size_t x = 0; x < rows[y].size(); x++) { auto name = rows[y][x]; if (auto grid_area = grid_areas.get(name); grid_area.has_value()) continue; find_area_rectangle(x, y, name); } } size_t max_column_line_index_of_area = 0; size_t max_row_line_index_of_area = 0; for (auto const& grid_area : grid_areas) { max_column_line_index_of_area = max(max_column_line_index_of_area, grid_area.value.column_end); max_row_line_index_of_area = max(max_row_line_index_of_area, grid_area.value.row_end); } if (max_column_line_index_of_area >= m_column_lines.size()) m_column_lines.resize(max_column_line_index_of_area + 1); if (max_row_line_index_of_area >= m_row_lines.size()) m_row_lines.resize(max_row_line_index_of_area + 1); // https://www.w3.org/TR/css-grid-2/#implicitly-assigned-line-name // 7.3.2. Implicitly-Assigned Line Names // The grid-template-areas property generates implicitly-assigned line names from the named grid areas in the // template. For each named grid area foo, four implicitly-assigned line names are created: two named foo-start, // naming the row-start and column-start lines of the named grid area, and two named foo-end, naming the row-end // and column-end lines of the named grid area. for (auto const& it : grid_areas) { auto const& grid_area = it.value; m_column_lines[grid_area.column_start].names.append(MUST(String::formatted("{}-start", grid_area.name))); m_column_lines[grid_area.column_end].names.append(MUST(String::formatted("{}-end", grid_area.name))); m_row_lines[grid_area.row_start].names.append(MUST(String::formatted("{}-start", grid_area.name))); m_row_lines[grid_area.row_end].names.append(MUST(String::formatted("{}-end", grid_area.name))); } } void GridFormattingContext::place_grid_items() { auto grid_template_columns = grid_container().computed_values().grid_template_columns(); auto grid_template_rows = grid_container().computed_values().grid_template_rows(); auto column_tracks_count = m_column_lines.size() - 1; auto row_tracks_count = m_row_lines.size() - 1; // https://drafts.csswg.org/css-grid/#overview-placement // 2.2. Placing Items // The contents of the grid container are organized into individual grid items (analogous to // flex items), which are then assigned to predefined areas in the grid. They can be explicitly // placed using coordinates through the grid-placement properties or implicitly placed into // empty areas using auto-placement. HashMap>> order_item_bucket; grid_container().for_each_child_of_type([&](Box& child_box) { if (can_skip_is_anonymous_text_run(child_box)) return IterationDecision::Continue; if (child_box.is_out_of_flow(*this)) return IterationDecision::Continue; child_box.set_grid_item(true); auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order()); order_bucket.append(child_box); return IterationDecision::Continue; }); m_occupation_grid = OccupationGrid(column_tracks_count, row_tracks_count); // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm auto keys = order_item_bucket.keys(); quick_sort(keys, [](auto& a, auto& b) { return a < b; }); // FIXME: 0. Generate anonymous grid items // 1. Position anything that's not auto-positioned. for (auto key : keys) { auto& boxes_to_place = order_item_bucket.get(key).value(); for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; auto const& computed_values = child_box->computed_values(); if (is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end()) || is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end())) continue; place_item_with_row_and_column_position(child_box); boxes_to_place.remove(i); i--; } } // 2. Process the items locked to a given row. // FIXME: Do "dense" packing for (auto key : keys) { auto& boxes_to_place = order_item_bucket.get(key).value(); for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; auto const& computed_values = child_box->computed_values(); if (is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end())) continue; place_item_with_row_position(child_box); boxes_to_place.remove(i); i--; } } // 3. Determine the columns in the implicit grid. // NOTE: "implicit grid" here is the same as the m_occupation_grid // 3.1. Start with the columns from the explicit grid. // NOTE: Done in step 1. // 3.2. Among all the items with a definite column position (explicitly positioned items, items // positioned in the previous step, and items not yet positioned but with a definite column) add // columns to the beginning and end of the implicit grid as necessary to accommodate those items. // NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1 // and 2, respectively. Adding columns for "items not yet positioned but with a definite column" // will be done in step 4. // 3.3. If the largest column span among all the items without a definite column position is larger // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate // that column span. for (auto key : keys) { auto& boxes_to_place = order_item_bucket.get(key).value(); for (auto const& child_box : boxes_to_place) { auto const& grid_column_start = child_box->computed_values().grid_column_start(); auto const& grid_column_end = child_box->computed_values().grid_column_end(); int column_span = 1; if (grid_column_start.is_span()) column_span = grid_column_start.span(); else if (grid_column_end.is_span()) column_span = grid_column_end.span(); if (column_span - 1 > m_occupation_grid.max_column_index()) m_occupation_grid.set_max_column_index(column_span - 1); } } // 4. Position the remaining grid items. // For each grid item that hasn't been positioned by the previous steps, in order-modified document // order: auto auto_placement_cursor_x = 0; auto auto_placement_cursor_y = 0; for (auto key : keys) { auto& boxes_to_place = order_item_bucket.get(key).value(); for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; auto const& computed_values = child_box->computed_values(); // 4.1. For sparse packing: // FIXME: no distinction made. See #4.2 // 4.1.1. If the item has a definite column position: if (!is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end())) place_item_with_column_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y); // 4.1.2. If the item has an automatic grid position in both axes: else place_item_with_no_declared_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y); boxes_to_place.remove(i); i--; // FIXME: 4.2. For dense packing: } } // NOTE: When final implicit grid sizes are known, we can offset their positions so leftmost grid track has 0 index. for (auto& item : m_grid_items) { item.row = item.row.value() - m_occupation_grid.min_row_index(); item.column = item.column.value() - m_occupation_grid.min_column_index(); } } void GridFormattingContext::determine_grid_container_height() { CSSPixels total_y = 0; for (auto& grid_row : m_grid_rows_and_gaps) total_y += grid_row.base_size; m_automatic_content_height = total_y; } CSS::JustifyItems GridFormattingContext::justification_for_item(Box const& box) const { switch (box.computed_values().justify_self()) { case CSS::JustifySelf::Auto: return grid_container().computed_values().justify_items(); case CSS::JustifySelf::End: return CSS::JustifyItems::End; case CSS::JustifySelf::Normal: return CSS::JustifyItems::Normal; case CSS::JustifySelf::SelfStart: return CSS::JustifyItems::SelfStart; case CSS::JustifySelf::SelfEnd: return CSS::JustifyItems::SelfEnd; case CSS::JustifySelf::FlexStart: return CSS::JustifyItems::FlexStart; case CSS::JustifySelf::FlexEnd: return CSS::JustifyItems::FlexEnd; case CSS::JustifySelf::Center: return CSS::JustifyItems::Center; case CSS::JustifySelf::Baseline: return CSS::JustifyItems::Baseline; case CSS::JustifySelf::Start: return CSS::JustifyItems::Start; case CSS::JustifySelf::Stretch: return CSS::JustifyItems::Stretch; case CSS::JustifySelf::Safe: return CSS::JustifyItems::Safe; case CSS::JustifySelf::Unsafe: return CSS::JustifyItems::Unsafe; case CSS::JustifySelf::Left: return CSS::JustifyItems::Left; case CSS::JustifySelf::Right: return CSS::JustifyItems::Right; default: VERIFY_NOT_REACHED(); } } CSS::AlignItems GridFormattingContext::alignment_for_item(Box const& box) const { switch (box.computed_values().align_self()) { case CSS::AlignSelf::Auto: return grid_container().computed_values().align_items(); case CSS::AlignSelf::End: return CSS::AlignItems::End; case CSS::AlignSelf::Normal: return CSS::AlignItems::Normal; case CSS::AlignSelf::SelfStart: return CSS::AlignItems::SelfStart; case CSS::AlignSelf::SelfEnd: return CSS::AlignItems::SelfEnd; case CSS::AlignSelf::FlexStart: return CSS::AlignItems::FlexStart; case CSS::AlignSelf::FlexEnd: return CSS::AlignItems::FlexEnd; case CSS::AlignSelf::Center: return CSS::AlignItems::Center; case CSS::AlignSelf::Baseline: return CSS::AlignItems::Baseline; case CSS::AlignSelf::Start: return CSS::AlignItems::Start; case CSS::AlignSelf::Stretch: return CSS::AlignItems::Stretch; case CSS::AlignSelf::Safe: return CSS::AlignItems::Safe; case CSS::AlignSelf::Unsafe: return CSS::AlignItems::Unsafe; default: VERIFY_NOT_REACHED(); } } void GridFormattingContext::resolve_grid_item_widths() { for (auto& item : m_grid_items) { CSSPixels containing_block_width = containing_block_size_for_item(item, GridDimension::Column); auto& box_state = m_state.get_mutable(item.box); auto const& computed_values = item.box->computed_values(); auto const& computed_width = computed_values.width(); struct ItemAlignment { CSSPixels margin_left; CSSPixels margin_right; CSSPixels width; }; ItemAlignment initial { .margin_left = box_state.margin_left, .margin_right = box_state.margin_right, .width = box_state.content_width() }; auto try_compute_width = [&](CSSPixels a_width, CSS::Size const& computed_width) -> ItemAlignment { ItemAlignment result = initial; result.width = a_width; // Auto margins absorb positive free space prior to alignment via the box alignment properties. auto free_space_left_for_margins = containing_block_width - result.width - box_state.border_left - box_state.border_right - box_state.padding_left - box_state.padding_right - box_state.margin_left - box_state.margin_right; if (computed_values.margin().left().is_auto() && computed_values.margin().right().is_auto()) { result.margin_left = free_space_left_for_margins / 2; result.margin_right = free_space_left_for_margins / 2; } else if (computed_values.margin().left().is_auto()) { result.margin_left = free_space_left_for_margins; } else if (computed_values.margin().right().is_auto()) { result.margin_right = free_space_left_for_margins; } else if (computed_width.is_auto()) { result.width += free_space_left_for_margins; } auto free_space_left_for_alignment = containing_block_width - a_width - box_state.border_left - box_state.border_right - box_state.padding_left - box_state.padding_right - box_state.margin_left - box_state.margin_right; switch (justification_for_item(item.box)) { case CSS::JustifyItems::Normal: case CSS::JustifyItems::Stretch: break; case CSS::JustifyItems::Center: result.margin_left += free_space_left_for_alignment / 2; result.margin_right += free_space_left_for_alignment / 2; result.width = a_width; break; case CSS::JustifyItems::Start: case CSS::JustifyItems::FlexStart: case CSS::JustifyItems::Left: result.margin_right += free_space_left_for_alignment; result.width = a_width; break; case CSS::JustifyItems::End: case CSS::JustifyItems::FlexEnd: case CSS::JustifyItems::Right: result.margin_left += free_space_left_for_alignment; result.width = a_width; break; default: break; } return result; }; ItemAlignment used_alignment; AvailableSpace available_space { AvailableSize::make_definite(containing_block_width), AvailableSize::make_indefinite() }; if (computed_width.is_auto()) { used_alignment = try_compute_width(calculate_fit_content_width(item.box, available_space), computed_width); } else if (computed_width.is_fit_content()) { used_alignment = try_compute_width(calculate_fit_content_width(item.box, available_space), computed_width); } else { auto width_px = calculate_inner_width(item.box, available_space.width, computed_width); used_alignment = try_compute_width(width_px, computed_width); } if (!should_treat_max_width_as_none(item.box, m_available_space->width)) { auto max_width_px = calculate_inner_width(item.box, available_space.width, computed_values.max_width()); auto max_width_alignment = try_compute_width(max_width_px, computed_values.max_width()); if (used_alignment.width > max_width_alignment.width) { used_alignment = max_width_alignment; } } if (!computed_values.min_width().is_auto()) { auto min_width_px = calculate_inner_width(item.box, available_space.width, computed_values.min_width()); auto min_width_alignment = try_compute_width(min_width_px, computed_values.min_width()); if (used_alignment.width < min_width_alignment.width) { used_alignment = min_width_alignment; } } box_state.margin_left = used_alignment.margin_left; box_state.margin_right = used_alignment.margin_right; box_state.set_content_width(used_alignment.width); } } void GridFormattingContext::resolve_grid_item_heights() { for (auto& item : m_grid_items) { CSSPixels containing_block_height = containing_block_size_for_item(item, GridDimension::Row); auto& box_state = m_state.get_mutable(item.box); auto const& computed_values = item.box->computed_values(); auto const& computed_height = computed_values.height(); struct ItemAlignment { CSSPixels margin_top; CSSPixels margin_bottom; CSSPixels height; }; ItemAlignment initial { .margin_top = box_state.margin_top, .margin_bottom = box_state.margin_bottom, .height = box_state.content_height() }; auto try_compute_height = [&](CSSPixels a_height) -> ItemAlignment { ItemAlignment result = initial; result.height = a_height; CSSPixels height = a_height; auto underflow_px = containing_block_height - height - box_state.border_top - box_state.border_bottom - box_state.padding_top - box_state.padding_bottom - box_state.margin_top - box_state.margin_bottom; if (computed_values.margin().top().is_auto() && computed_values.margin().bottom().is_auto()) { auto half_of_the_underflow = underflow_px / 2; result.margin_top = half_of_the_underflow; result.margin_bottom = half_of_the_underflow; } else if (computed_values.margin().top().is_auto()) { result.margin_top = underflow_px; } else if (computed_values.margin().bottom().is_auto()) { result.margin_bottom = underflow_px; } else if (computed_values.height().is_auto()) { height += underflow_px; } switch (alignment_for_item(item.box)) { case CSS::AlignItems::Baseline: // FIXME: Not implemented case CSS::AlignItems::Stretch: case CSS::AlignItems::Normal: result.height = height; break; case CSS::AlignItems::Start: case CSS::AlignItems::FlexStart: case CSS::AlignItems::SelfStart: result.margin_bottom += underflow_px; break; case CSS::AlignItems::End: case CSS::AlignItems::SelfEnd: case CSS::AlignItems::FlexEnd: result.margin_top += underflow_px; break; case CSS::AlignItems::Center: result.margin_top += underflow_px / 2; result.margin_bottom += underflow_px / 2; break; default: break; } return result; }; ItemAlignment used_alignment; if (computed_height.is_auto()) { used_alignment = try_compute_height(calculate_fit_content_height(item.box, get_available_space_for_item(item))); } else if (computed_height.is_fit_content()) { used_alignment = try_compute_height(calculate_fit_content_height(item.box, get_available_space_for_item(item))); } else { used_alignment = try_compute_height(computed_height.to_px(grid_container(), containing_block_height)); } if (!should_treat_max_height_as_none(item.box, m_available_space->height)) { auto max_height_alignment = try_compute_height(computed_values.max_height().to_px(grid_container(), containing_block_height)); if (used_alignment.height > max_height_alignment.height) { used_alignment = max_height_alignment; } } if (!computed_values.min_height().is_auto()) { auto min_height_alignment = try_compute_height(computed_values.min_height().to_px(grid_container(), containing_block_height)); if (used_alignment.height < min_height_alignment.height) { used_alignment = min_height_alignment; } } box_state.margin_top = used_alignment.margin_top; box_state.margin_bottom = used_alignment.margin_bottom; box_state.set_content_height(used_alignment.height); } } void GridFormattingContext::resolve_track_spacing(GridDimension const dimension) { auto is_column_dimension = dimension == GridDimension::Column; auto total_gap_space = is_column_dimension ? m_available_space->width.to_px_or_zero() : m_available_space->height.to_px_or_zero(); auto& grid_tracks = is_column_dimension ? m_grid_columns : m_grid_rows; for (auto& track : grid_tracks) { total_gap_space -= track.base_size; } total_gap_space = max(total_gap_space, 0); auto gap_track_count = is_column_dimension ? m_column_gap_tracks.size() : m_row_gap_tracks.size(); if (gap_track_count == 0) return; CSSPixels space_between_tracks = 0; Alignment alignment; if (is_column_dimension) { alignment = to_alignment(grid_container().computed_values().justify_content()); } else { alignment = to_alignment(grid_container().computed_values().align_content()); } switch (alignment) { case Alignment::SpaceBetween: space_between_tracks = CSSPixels(total_gap_space / gap_track_count); break; case Alignment::SpaceAround: space_between_tracks = CSSPixels(total_gap_space / (gap_track_count + 1)); break; case Alignment::SpaceEvenly: space_between_tracks = CSSPixels(total_gap_space / (gap_track_count + 2)); break; case Alignment::Normal: case Alignment::Stretch: case Alignment::Start: case Alignment::End: case Alignment::Center: default: break; } auto const& computed_gap = is_column_dimension ? grid_container().computed_values().column_gap() : grid_container().computed_values().row_gap(); auto const& available_size = is_column_dimension ? m_available_space->width.to_px_or_zero() : m_available_space->height.to_px_or_zero(); space_between_tracks = max(space_between_tracks, gap_to_px(computed_gap, grid_container(), available_size)); auto& gap_tracks = is_column_dimension ? m_column_gap_tracks : m_row_gap_tracks; for (auto& track : gap_tracks) { track.base_size = space_between_tracks; } } void GridFormattingContext::resolve_items_box_metrics(GridDimension const dimension) { for (auto& item : m_grid_items) { auto& box_state = m_state.get_mutable(item.box); auto& computed_values = item.box->computed_values(); CSSPixels containing_block_width = containing_block_size_for_item(item, GridDimension::Column); if (dimension == GridDimension::Column) { box_state.padding_right = computed_values.padding().right().to_px(grid_container(), containing_block_width); box_state.padding_left = computed_values.padding().left().to_px(grid_container(), containing_block_width); box_state.margin_right = computed_values.margin().right().to_px(grid_container(), containing_block_width); box_state.margin_left = computed_values.margin().left().to_px(grid_container(), containing_block_width); box_state.border_right = computed_values.border_right().width; box_state.border_left = computed_values.border_left().width; } else { box_state.padding_top = computed_values.padding().top().to_px(grid_container(), containing_block_width); box_state.padding_bottom = computed_values.padding().bottom().to_px(grid_container(), containing_block_width); box_state.margin_top = computed_values.margin().top().to_px(grid_container(), containing_block_width); box_state.margin_bottom = computed_values.margin().bottom().to_px(grid_container(), containing_block_width); box_state.border_top = computed_values.border_top().width; box_state.border_bottom = computed_values.border_bottom().width; } } } void GridFormattingContext::collapse_auto_fit_tracks_if_needed(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#auto-repeat // The auto-fit keyword behaves the same as auto-fill, except that after grid item placement any // empty repeated tracks are collapsed. An empty track is one with no in-flow grid items placed into // or spanning across it. (This can result in all tracks being collapsed, if they’re all empty.) auto const& grid_computed_values = grid_container().computed_values(); auto const& tracks_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns().track_list() : grid_computed_values.grid_template_rows().track_list(); auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; if (tracks_definition.size() == 1 && tracks_definition.first().is_repeat() && tracks_definition.first().repeat().is_auto_fit()) { for (size_t track_index = 0; track_index < tracks.size(); track_index++) { if (m_occupation_grid.is_occupied(dimension == GridDimension::Column ? track_index : 0, dimension == GridDimension::Row ? track_index : 0)) continue; // NOTE: A collapsed track is treated as having a fixed track sizing function of 0px tracks[track_index].min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0)); tracks[track_index].max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0)); } } } CSSPixelRect GridFormattingContext::get_grid_area_rect(GridItem const& grid_item) const { CSSPixelRect area_rect; auto place_into_track = [&](GridDimension const dimension) { auto const& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto resolved_span = grid_item.span(dimension) * 2; auto gap_adjusted_position = grid_item.gap_adjusted_position(dimension); int start = gap_adjusted_position; int end = start + resolved_span; VERIFY(start <= end); auto grid_container_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; CSSPixels sum_of_base_sizes_including_gaps = 0; for (auto const& track : tracks_and_gaps) { sum_of_base_sizes_including_gaps += track.base_size; } Alignment alignment; if (dimension == GridDimension::Column) { alignment = to_alignment(grid_container().computed_values().justify_content()); } else { alignment = to_alignment(grid_container().computed_values().align_content()); } CSSPixels start_offset = 0; CSSPixels end_offset = 0; if (alignment == Alignment::Center || alignment == Alignment::SpaceAround || alignment == Alignment::SpaceEvenly) { auto free_space = grid_container_size.to_px_or_zero() - sum_of_base_sizes_including_gaps; free_space = max(free_space, 0); start_offset = free_space / 2; end_offset = free_space / 2; } else if (alignment == Alignment::End) { auto free_space = grid_container_size.to_px_or_zero() - sum_of_base_sizes_including_gaps; start_offset = free_space; end_offset = free_space; } for (int i = 0; i < min(start, tracks_and_gaps.size()); i++) start_offset += tracks_and_gaps[i].base_size; for (int i = 0; i < min(end, tracks_and_gaps.size()); i++) { end_offset += tracks_and_gaps[i].base_size; } if (dimension == GridDimension::Column) { area_rect.set_x(start_offset); area_rect.set_width(end_offset - start_offset); } else { area_rect.set_y(start_offset); area_rect.set_height(end_offset - start_offset); } }; auto place_into_track_formed_by_last_line_and_grid_container_padding_edge = [&](GridDimension const dimension) { VERIFY(grid_item.box->is_absolutely_positioned()); auto const& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto const& grid_container_state = m_state.get(grid_container()); CSSPixels offset = 0; for (auto const& row_track : tracks_and_gaps) { offset += row_track.base_size; } CSSPixels size = dimension == GridDimension::Column ? grid_container_state.padding_right : grid_container_state.padding_bottom; if (dimension == GridDimension::Column) { area_rect.set_x(offset); area_rect.set_width(size); } else { area_rect.set_y(offset); area_rect.set_height(size); } }; if (grid_item.row.has_value()) { if (grid_item.row == (int)m_grid_rows.size()) { place_into_track_formed_by_last_line_and_grid_container_padding_edge(GridDimension::Row); } else { place_into_track(GridDimension::Row); } } else { // https://www.w3.org/TR/css-grid-2/#abspos-items // Instead of auto-placement, an auto value for a grid-placement property contributes a special line to the placement whose position // is that of the corresponding padding edge of the grid container (the padding edge of the scrollable area, if the grid container // overflows). These lines become the first and last lines (0th and -0th) of the augmented grid used for positioning absolutely-positioned items. CSSPixels height = 0; for (auto const& row_track : m_grid_rows_and_gaps) { height += row_track.base_size; } auto const& grid_container_state = m_state.get(grid_container()); height += grid_container_state.padding_top; height += grid_container_state.padding_bottom; area_rect.set_height(height); area_rect.set_y(-grid_container_state.padding_top); } if (grid_item.column.has_value()) { if (grid_item.column == (int)m_grid_columns.size()) { place_into_track_formed_by_last_line_and_grid_container_padding_edge(GridDimension::Column); } else { place_into_track(GridDimension::Column); } } else { CSSPixels width = 0; for (auto const& col_track : m_grid_columns_and_gaps) { width += col_track.base_size; } auto const& grid_container_state = m_state.get(grid_container()); width += grid_container_state.padding_left; width += grid_container_state.padding_right; area_rect.set_width(width); area_rect.set_x(-grid_container_state.padding_left); } return area_rect; } void GridFormattingContext::run(AvailableSpace const& available_space) { m_available_space = available_space; init_grid_lines(GridDimension::Column); init_grid_lines(GridDimension::Row); build_grid_areas(); auto const& grid_computed_values = grid_container().computed_values(); // NOTE: We store explicit grid sizes to later use in determining the position of items with negative index. m_explicit_columns_line_count = m_column_lines.size(); m_explicit_rows_line_count = m_row_lines.size(); place_grid_items(); initialize_grid_tracks_for_columns_and_rows(); initialize_gap_tracks(available_space); collapse_auto_fit_tracks_if_needed(GridDimension::Column); collapse_auto_fit_tracks_if_needed(GridDimension::Row); for (auto& item : m_grid_items) { auto& box_state = m_state.get_mutable(item.box); auto& computed_values = item.box->computed_values(); // NOTE: As the containing blocks of grid items are created by implicit grid areas that are not present in the // layout tree, the initial value of has_definite_width/height computed by LayoutState::UsedValues::set_node // will be incorrect for anything other (auto, percentage, calculated) than fixed lengths. // Therefor, it becomes necessary to reset this value to indefinite. // TODO: Handle this in LayoutState::UsedValues::set_node if (!computed_values.width().is_length()) box_state.set_indefinite_content_width(); if (!computed_values.height().is_length()) box_state.set_indefinite_content_height(); if (item.box->is_replaced_box()) { auto& replaced_box = static_cast(*item.box); // FIXME: This const_cast is gross. const_cast(replaced_box).prepare_for_replaced_layout(); } } // Do the first pass of resolving grid items box metrics to compute values that are independent of a track width resolve_items_box_metrics(GridDimension::Column); run_track_sizing(GridDimension::Column); // Do the second pass of resolving box metrics to compute values that depend on a track width resolve_items_box_metrics(GridDimension::Column); // Once the sizes of column tracks, which determine the widths of the grid areas forming the containing blocks // for grid items, ara calculated, it becomes possible to determine the final widths of the grid items. resolve_grid_item_widths(); // Do the first pass of resolving grid items box metrics to compute values that are independent of a track height resolve_items_box_metrics(GridDimension::Row); run_track_sizing(GridDimension::Row); // Do the second pass of resolving box metrics to compute values that depend on a track height resolve_items_box_metrics(GridDimension::Row); resolve_grid_item_heights(); determine_grid_container_height(); resolve_track_spacing(GridDimension::Column); resolve_track_spacing(GridDimension::Row); CSSPixels min_height = 0; if (!grid_computed_values.min_height().is_auto()) min_height = calculate_inner_height(grid_container(), available_space.height, grid_computed_values.min_height()); // If automatic grid container height is less than min-height, we need to re-run the track sizing algorithm if (m_automatic_content_height < min_height) { resolve_items_box_metrics(GridDimension::Row); AvailableSize width(available_space.width); AvailableSize height(AvailableSize::make_definite(min_height)); m_available_space = AvailableSpace(width, height); run_track_sizing(GridDimension::Row); resolve_items_box_metrics(GridDimension::Row); resolve_grid_item_heights(); determine_grid_container_height(); } if (available_space.height.is_intrinsic_sizing_constraint() || available_space.width.is_intrinsic_sizing_constraint()) { determine_intrinsic_size_of_grid_container(available_space); return; } for (auto& grid_item : m_grid_items) { auto& grid_item_box_state = m_state.get_mutable(grid_item.box); CSSPixelPoint margin_offset = { grid_item_box_state.margin_box_left(), grid_item_box_state.margin_box_top() }; auto const grid_area_rect = get_grid_area_rect(grid_item); grid_item_box_state.offset = grid_area_rect.top_left() + margin_offset; compute_inset(grid_item.box, grid_area_rect.size()); auto available_space_for_children = AvailableSpace(AvailableSize::make_definite(grid_item_box_state.content_width()), AvailableSize::make_definite(grid_item_box_state.content_height())); if (auto independent_formatting_context = layout_inside(grid_item.box, LayoutMode::Normal, available_space_for_children)) independent_formatting_context->parent_context_did_dimension_child_root_box(); } Vector> grid_track_columns; grid_track_columns.ensure_capacity(m_grid_columns.size()); for (auto const& column : m_grid_columns) { grid_track_columns.append(CSS::ExplicitGridTrack { CSS::GridSize { CSS::LengthPercentage(CSS::Length::make_px(column.base_size)) } }); } Vector> grid_track_rows; grid_track_rows.ensure_capacity(m_grid_rows.size()); for (auto const& row : m_grid_rows) { grid_track_rows.append(CSS::ExplicitGridTrack { CSS::GridSize { CSS::LengthPercentage(CSS::Length::make_px(row.base_size)) } }); } // getComputedStyle() needs to return the resolved values of grid-template-columns and grid-template-rows // so they need to be saved in the state, and then assigned to paintables in LayoutState::commit() m_state.get_mutable(grid_container()).set_grid_template_columns(CSS::GridTrackSizeListStyleValue::create(move(grid_track_columns))); m_state.get_mutable(grid_container()).set_grid_template_rows(CSS::GridTrackSizeListStyleValue::create(move(grid_track_rows))); } void GridFormattingContext::layout_absolutely_positioned_element(Box const& box) { auto& box_state = m_state.get_mutable(box); auto const& computed_values = box.computed_values(); auto is_auto_row = is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end()); auto is_auto_column = is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end()); GridItem item { box, {}, {}, {}, {} }; if (!is_auto_row) { auto row_placement_position = resolve_grid_position(box, GridDimension::Row); item.row = row_placement_position.start; item.row_span = row_placement_position.span; } if (!is_auto_column) { auto column_placement_position = resolve_grid_position(box, GridDimension::Column); item.column = column_placement_position.start; item.column_span = column_placement_position.span; } auto grid_area_rect = get_grid_area_rect(item); auto available_width = AvailableSize::make_definite(grid_area_rect.width()); auto available_height = AvailableSize::make_definite(grid_area_rect.height()); AvailableSpace available_space { available_width, available_height }; // The border computed values are not changed by the compute_height & width calculations below. // The spec only adjusts and computes sizes, insets and margins. box_state.border_left = box.computed_values().border_left().width; box_state.border_right = box.computed_values().border_right().width; box_state.border_top = box.computed_values().border_top().width; box_state.border_bottom = box.computed_values().border_bottom().width; box_state.padding_left = box.computed_values().padding().left().to_px(grid_container(), grid_area_rect.width()); box_state.padding_right = box.computed_values().padding().right().to_px(grid_container(), grid_area_rect.width()); box_state.padding_top = box.computed_values().padding().top().to_px(grid_container(), grid_area_rect.width()); box_state.padding_bottom = box.computed_values().padding().bottom().to_px(grid_container(), grid_area_rect.width()); compute_width_for_absolutely_positioned_element(box, available_space); // NOTE: We compute height before *and* after doing inside layout. // This is done so that inside layout can resolve percentage heights. // In some situations, e.g with non-auto top & bottom values, the height can be determined early. compute_height_for_absolutely_positioned_element(box, available_space, BeforeOrAfterInsideLayout::Before); auto independent_formatting_context = layout_inside(box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(available_space)); compute_height_for_absolutely_positioned_element(box, available_space, BeforeOrAfterInsideLayout::After); if (computed_values.inset().left().is_auto() && computed_values.inset().right().is_auto()) { auto width_left_for_alignment = grid_area_rect.width() - box_state.margin_box_width(); switch (justification_for_item(box)) { case CSS::JustifyItems::Normal: case CSS::JustifyItems::Stretch: break; case CSS::JustifyItems::Center: box_state.inset_left = width_left_for_alignment / 2; box_state.inset_right = width_left_for_alignment / 2; break; case CSS::JustifyItems::Start: case CSS::JustifyItems::FlexStart: case CSS::JustifyItems::Left: box_state.inset_right = width_left_for_alignment; break; case CSS::JustifyItems::End: case CSS::JustifyItems::FlexEnd: case CSS::JustifyItems::Right: box_state.inset_left = width_left_for_alignment; break; default: break; } } if (computed_values.inset().top().is_auto() && computed_values.inset().bottom().is_auto()) { auto height_left_for_alignment = grid_area_rect.height() - box_state.margin_box_height(); switch (alignment_for_item(box)) { case CSS::AlignItems::Baseline: // FIXME: Not implemented case CSS::AlignItems::Stretch: case CSS::AlignItems::Normal: break; case CSS::AlignItems::Start: case CSS::AlignItems::FlexStart: case CSS::AlignItems::SelfStart: box_state.inset_bottom = height_left_for_alignment; break; case CSS::AlignItems::End: case CSS::AlignItems::SelfEnd: case CSS::AlignItems::FlexEnd: { box_state.inset_top = height_left_for_alignment; break; } case CSS::AlignItems::Center: box_state.inset_top = height_left_for_alignment / 2; box_state.inset_bottom = height_left_for_alignment / 2; break; default: break; } } // If an absolutely positioned element’s containing block is generated by a grid container, // the containing block corresponds to the grid area determined by its grid-placement properties. // The offset properties (top/right/bottom/left) then indicate offsets inwards from the corresponding // edges of this containing block, as normal. CSSPixelPoint used_offset; used_offset.set_x(grid_area_rect.x() + box_state.inset_left + box_state.margin_box_left()); used_offset.set_y(grid_area_rect.y() + box_state.inset_top + box_state.margin_box_top()); box_state.set_content_offset(used_offset); if (independent_formatting_context) independent_formatting_context->parent_context_did_dimension_child_root_box(); } void GridFormattingContext::parent_context_did_dimension_child_root_box() { if (m_layout_mode != LayoutMode::Normal) return; grid_container().for_each_child_of_type([&](Layout::Box& box) { if (box.is_absolutely_positioned()) { m_state.get_mutable(box).set_static_position_rect(calculate_static_position_rect(box)); } return IterationDecision::Continue; }); for (auto const& child : grid_container().contained_abspos_children()) { auto const& box = verify_cast(*child); layout_absolutely_positioned_element(box); } } void GridFormattingContext::determine_intrinsic_size_of_grid_container(AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-1/#intrinsic-sizes // The max-content size (min-content size) of a grid container is the sum of the grid container’s track sizes // (including gutters) in the appropriate axis, when the grid is sized under a max-content constraint (min-content constraint). if (available_space.height.is_intrinsic_sizing_constraint()) { CSSPixels grid_container_height = 0; for (auto& track : m_grid_rows_and_gaps) { grid_container_height += track.base_size; } m_state.get_mutable(grid_container()).set_content_height(grid_container_height); } if (available_space.width.is_intrinsic_sizing_constraint()) { CSSPixels grid_container_width = 0; for (auto& track : m_grid_columns_and_gaps) { grid_container_width += track.base_size; } m_state.get_mutable(grid_container()).set_content_width(grid_container_width); } } CSSPixels GridFormattingContext::automatic_content_width() const { return m_state.get(grid_container()).content_width(); } CSSPixels GridFormattingContext::automatic_content_height() const { return m_automatic_content_height; } bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const { return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned(); } AvailableSize GridFormattingContext::get_free_space(AvailableSpace const& available_space, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-2/#algo-terms // free space: Equal to the available grid space minus the sum of the base sizes of all the grid // tracks (including gutters), floored at zero. If available grid space is indefinite, the free // space is indefinite as well. auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; auto& tracks = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; if (available_size.is_definite()) { CSSPixels sum_base_sizes = 0; for (auto& track : tracks) sum_base_sizes += track.base_size; return AvailableSize::make_definite(max(CSSPixels(0), available_size.to_px_or_zero() - sum_base_sizes)); } return available_size; } Optional GridFormattingContext::get_line_index_by_line_name(GridDimension dimension, String const& line_name) { auto const& lines = dimension == GridDimension::Column ? m_column_lines : m_row_lines; for (size_t line_index = 0; line_index < lines.size(); line_index++) { for (auto const& name : lines[line_index].names) { if (name == line_name) return static_cast(line_index); } } return {}; } void GridFormattingContext::init_grid_lines(GridDimension dimension) { auto const& grid_computed_values = grid_container().computed_values(); auto const& lines_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns() : grid_computed_values.grid_template_rows(); auto& lines = dimension == GridDimension::Column ? m_column_lines : m_row_lines; Vector line_names; Function expand_lines_definition = [&](CSS::GridTrackSizeList const& lines_definition) { for (auto const& item : lines_definition.list()) { if (item.has()) { line_names.extend(item.get().names); } else if (item.has()) { auto const& explicit_track = item.get(); if (explicit_track.is_default() || explicit_track.is_minmax() || explicit_track.is_fit_content()) { lines.append({ .names = line_names }); line_names.clear(); } else if (explicit_track.is_repeat()) { int repeat_count = 0; if (explicit_track.repeat().is_auto_fill() || explicit_track.repeat().is_auto_fit()) repeat_count = count_of_repeated_auto_fill_or_fit_tracks(dimension, explicit_track); else repeat_count = explicit_track.repeat().repeat_count(); auto const& repeat_track = explicit_track.repeat(); for (int i = 0; i < repeat_count; i++) expand_lines_definition(repeat_track.grid_track_size_list()); } else { VERIFY_NOT_REACHED(); } } } }; expand_lines_definition(lines_definition); lines.append({ .names = line_names }); } void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end) { for (int row_index = row_start; row_index < row_end; row_index++) { for (int column_index = column_start; column_index < column_end; column_index++) { m_min_column_index = min(m_min_column_index, column_index); m_max_column_index = max(m_max_column_index, column_index); m_min_row_index = min(m_min_row_index, row_index); m_max_row_index = max(m_max_row_index, row_index); m_occupation_grid.set(GridPosition { .row = row_index, .column = column_index }); } } } bool OccupationGrid::is_occupied(int column_index, int row_index) const { return m_occupation_grid.contains(GridPosition { row_index, column_index }); } int GridItem::gap_adjusted_row() const { return row.value() * 2; } int GridItem::gap_adjusted_column() const { return column.value() * 2; } CSSPixels GridFormattingContext::calculate_grid_container_maximum_size(GridDimension const dimension) const { auto const& computed_values = grid_container().computed_values(); if (dimension == GridDimension::Column) return calculate_inner_width(grid_container(), m_available_space->width, computed_values.max_width()); return calculate_inner_height(grid_container(), m_available_space->height, computed_values.max_height()); } CSS::Size const& GridFormattingContext::get_item_preferred_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) return item.box->computed_values().width(); return item.box->computed_values().height(); } CSSPixels GridFormattingContext::calculate_min_content_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) { return calculate_min_content_width(item.box); } else { return calculate_min_content_height(item.box, get_available_space_for_item(item).width.to_px_or_zero()); } } CSSPixels GridFormattingContext::calculate_max_content_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) { return calculate_max_content_width(item.box); } else { return calculate_max_content_height(item.box, get_available_space_for_item(item).width.to_px_or_zero()); } } CSSPixels GridFormattingContext::containing_block_size_for_item(GridItem const& item, GridDimension const dimension) const { CSSPixels containing_block_size = 0; for_each_spanned_track_by_item(item, dimension, [&](GridTrack const& track) { containing_block_size += track.base_size; }); return containing_block_size; } AvailableSpace GridFormattingContext::get_available_space_for_item(GridItem const& item) const { auto& item_box_state = m_state.get(item.box); AvailableSize available_width = item_box_state.has_definite_width() ? AvailableSize::make_definite(item_box_state.content_width()) : AvailableSize::make_indefinite(); AvailableSize available_height = item_box_state.has_definite_height() ? AvailableSize::make_definite(item_box_state.content_height()) : AvailableSize::make_indefinite(); return AvailableSpace(available_width, available_height); } static CSS::Size const& get_item_minimum_size(GridItem const& item, GridDimension const dimension) { if (dimension == GridDimension::Column) return item.box->computed_values().min_width(); return item.box->computed_values().min_height(); } static CSS::Size const& get_item_maximum_size(GridItem const& item, GridDimension const dimension) { if (dimension == GridDimension::Column) return item.box->computed_values().max_width(); return item.box->computed_values().max_height(); } CSSPixels GridFormattingContext::calculate_min_content_contribution(GridItem const& item, GridDimension const dimension) const { auto available_space_for_item = get_available_space_for_item(item); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, available_space_for_item); return should_treat_height_as_auto(item.box, available_space_for_item); }(); auto maxium_size = CSSPixels::max(); if (auto const& css_maximum_size = get_item_maximum_size(item, dimension); css_maximum_size.is_length()) { maxium_size = css_maximum_size.length().to_px(item.box); } if (should_treat_preferred_size_as_auto) { auto result = item.add_margin_box_sizes(calculate_min_content_size(item, dimension), dimension, m_state); return min(result, maxium_size); } auto preferred_size = get_item_preferred_size(item, dimension); auto containing_block_size = containing_block_size_for_item(item, dimension); auto result = item.add_margin_box_sizes(preferred_size.to_px(grid_container(), containing_block_size), dimension, m_state); return min(result, maxium_size); } CSSPixels GridFormattingContext::calculate_max_content_contribution(GridItem const& item, GridDimension const dimension) const { auto available_space_for_item = get_available_space_for_item(item); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, available_space_for_item); return should_treat_height_as_auto(item.box, available_space_for_item); }(); auto maxium_size = CSSPixels::max(); if (auto const& css_maximum_size = get_item_maximum_size(item, dimension); css_maximum_size.is_length()) { maxium_size = css_maximum_size.length().to_px(item.box); } auto preferred_size = get_item_preferred_size(item, dimension); if (should_treat_preferred_size_as_auto || preferred_size.is_fit_content()) { auto fit_content_size = dimension == GridDimension::Column ? calculate_fit_content_width(item.box, available_space_for_item) : calculate_fit_content_height(item.box, available_space_for_item); auto result = item.add_margin_box_sizes(fit_content_size, dimension, m_state); return min(result, maxium_size); } auto containing_block_size = containing_block_size_for_item(item, dimension); auto result = item.add_margin_box_sizes(preferred_size.to_px(grid_container(), containing_block_size), dimension, m_state); return min(result, maxium_size); } CSSPixels GridFormattingContext::calculate_limited_min_content_contribution(GridItem const& item, GridDimension const dimension) const { // The limited min-content contribution of an item is its min-content contribution, // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution. auto min_content_contribution = calculate_min_content_contribution(item, dimension); auto minimum_contribution = calculate_minimum_contribution(item, dimension); if (min_content_contribution < minimum_contribution) return minimum_contribution; auto should_treat_max_size_as_none = [&]() { switch (dimension) { case GridDimension::Row: return should_treat_max_height_as_none(grid_container(), m_available_space->height); case GridDimension::Column: return should_treat_max_width_as_none(grid_container(), m_available_space->width); default: VERIFY_NOT_REACHED(); } }(); // FIXME: limit by max track sizing function instead of grid container maximum size if (!should_treat_max_size_as_none) { auto max_size = calculate_grid_container_maximum_size(dimension); if (min_content_contribution > max_size) return max_size; } return min_content_contribution; } CSSPixels GridFormattingContext::calculate_limited_max_content_contribution(GridItem const& item, GridDimension const dimension) const { // The limited max-content contribution of an item is its max-content contribution, // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution. auto max_content_contribution = calculate_max_content_contribution(item, dimension); auto minimum_contribution = calculate_minimum_contribution(item, dimension); if (max_content_contribution < minimum_contribution) return minimum_contribution; // FIXME: limit by max track sizing function instead of grid container maximum size auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; if (!should_treat_max_width_as_none(grid_container(), available_size)) { auto max_width = calculate_grid_container_maximum_size(dimension); if (max_content_contribution > max_width) return max_width; } return max_content_contribution; } CSSPixels GridFormattingContext::content_size_suggestion(GridItem const& item, GridDimension const dimension) const { // The content size suggestion is the min-content size in the relevant axis // FIXME: clamped, if it has a preferred aspect ratio, by any definite opposite-axis minimum and maximum sizes // converted through the aspect ratio. return calculate_min_content_size(item, dimension); } Optional GridFormattingContext::specified_size_suggestion(GridItem const& item, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-1/#specified-size-suggestion // If the item’s preferred size in the relevant axis is definite, then the specified size suggestion is that size. // It is otherwise undefined. auto const& used_values = m_state.get(item.box); auto has_definite_preferred_size = dimension == GridDimension::Column ? used_values.has_definite_width() : used_values.has_definite_height(); if (has_definite_preferred_size) { // FIXME: consider margins, padding and borders because it is outer size. auto containing_block_size = containing_block_size_for_item(item, dimension); return get_item_preferred_size(item, dimension).to_px(item.box, containing_block_size); } return {}; } CSSPixels GridFormattingContext::content_based_minimum_size(GridItem const& item, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-1/#content-based-minimum-size // The content-based minimum size for a grid item in a given dimension is its specified size suggestion if it exists, // otherwise its transferred size suggestion if that exists, // else its content size suggestion, see below. // In all cases, the size suggestion is additionally clamped by the maximum size in the affected axis, if it’s definite. auto maximum_size = CSSPixels::max(); if (auto const& css_maximum_size = get_item_maximum_size(item, dimension); css_maximum_size.is_length()) { maximum_size = css_maximum_size.length().to_px(item.box); } if (auto specified_size_suggestion = this->specified_size_suggestion(item, dimension); specified_size_suggestion.has_value()) { return min(specified_size_suggestion.value(), maximum_size); } return min(content_size_suggestion(item, dimension), maximum_size); } CSSPixels GridFormattingContext::automatic_minimum_size(GridItem const& item, GridDimension const dimension) const { // To provide a more reasonable default minimum size for grid items, the used value of its automatic minimum size // in a given axis is the content-based minimum size if all of the following are true: // - it is not a scroll container // - it spans at least one track in that axis whose min track sizing function is auto // - if it spans more than one track in that axis, none of those tracks are flexible auto const& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto item_track_index = item.raw_position(dimension); auto item_track_span = item.span(dimension); AvailableSize const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; bool spans_auto_tracks = false; bool spans_flexible_tracks = false; for (size_t index = 0; index < item_track_span; index++) { auto const& track = tracks[item_track_index + index]; if (track.max_track_sizing_function.is_flexible_length()) spans_flexible_tracks = true; if (track.min_track_sizing_function.is_auto(available_size)) spans_auto_tracks = true; } if (spans_auto_tracks && !item.box->is_scroll_container() && (item_track_span == 1 || !spans_flexible_tracks)) { return content_based_minimum_size(item, dimension); } // Otherwise, the automatic minimum size is zero, as usual. return 0; } CSSPixels GridFormattingContext::calculate_minimum_contribution(GridItem const& item, GridDimension const dimension) const { // The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. auto preferred_size = get_item_preferred_size(item, dimension); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, get_available_space_for_item(item)); return should_treat_height_as_auto(item.box, get_available_space_for_item(item)); }(); if (should_treat_preferred_size_as_auto) { auto minimum_size = get_item_minimum_size(item, dimension); if (minimum_size.is_auto()) return item.add_margin_box_sizes(automatic_minimum_size(item, dimension), dimension, m_state); auto containing_block_size = containing_block_size_for_item(item, dimension); return item.add_margin_box_sizes(minimum_size.to_px(grid_container(), containing_block_size), dimension, m_state); } return calculate_min_content_contribution(item, dimension); } StaticPositionRect GridFormattingContext::calculate_static_position_rect(Box const& box) const { // Result of this function is only used when containing block is not a grid container. // If the containing block is a grid container then static position is a grid area rect and // layout_absolutely_positioned_element() defined for GFC knows how to handle this case. StaticPositionRect static_position; auto const& box_state = m_state.get(box); auto offset_to_static_parent = content_box_rect_in_static_position_ancestor_coordinate_space(box, *box.containing_block()); static_position.rect = { offset_to_static_parent.location().translated(0, 0), { box_state.content_width(), box_state.content_height() } }; return static_position; } } namespace AK { template<> struct Traits : public DefaultTraits { static unsigned hash(Web::Layout::GridPosition const& key) { return pair_int_hash(key.row, key.column); } }; }