/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2021, Tobias Christiansen * Copyright (c) 2021-2023, Sam Atkins * Copyright (c) 2022-2023, MacDue * Copyright (c) 2023, Ali Mohammad Pur * * SPDX-License-Identifier: BSD-2-Clause */ #include "EasingStyleValue.h" #include #include namespace Web::CSS { // https://drafts.csswg.org/css-easing-1/#valdef-easing-function-linear EasingStyleValue::Linear EasingStyleValue::Linear::identity() { static Linear linear { { { 0, {}, false }, { 1, {}, false } } }; return linear; } // NOTE: Magic cubic bezier values from https://www.w3.org/TR/css-easing-1/#valdef-cubic-bezier-easing-function-ease EasingStyleValue::CubicBezier EasingStyleValue::CubicBezier::ease() { static CubicBezier bezier { 0.25, 0.1, 0.25, 1.0 }; return bezier; } EasingStyleValue::CubicBezier EasingStyleValue::CubicBezier::ease_in() { static CubicBezier bezier { 0.42, 0.0, 1.0, 1.0 }; return bezier; } EasingStyleValue::CubicBezier EasingStyleValue::CubicBezier::ease_out() { static CubicBezier bezier { 0.0, 0.0, 0.58, 1.0 }; return bezier; } EasingStyleValue::CubicBezier EasingStyleValue::CubicBezier::ease_in_out() { static CubicBezier bezier { 0.42, 0.0, 0.58, 1.0 }; return bezier; } EasingStyleValue::Steps EasingStyleValue::Steps::step_start() { static Steps steps { 1, Steps::Position::Start }; return steps; } EasingStyleValue::Steps EasingStyleValue::Steps::step_end() { static Steps steps { 1, Steps::Position::End }; return steps; } bool EasingStyleValue::CubicBezier::operator==(Web::CSS::EasingStyleValue::CubicBezier const& other) const { return x1 == other.x1 && y1 == other.y1 && x2 == other.x2 && y2 == other.y2; } // https://drafts.csswg.org/css-easing/#linear-canonicalization EasingStyleValue::Linear::Linear(Vector stops) { // To canonicalize a linear() function’s control points, perform the following: // 1. If the first control point lacks an input progress value, set its input progress value to 0. if (!stops.first().input.has_value()) stops.first().input = 0; // 2. If the last control point lacks an input progress value, set its input progress value to 1. if (!stops.last().input.has_value()) stops.last().input = 1; // 3. If any control point has an input progress value that is less than // the input progress value of any preceding control point, // set its input progress value to the largest input progress value of any preceding control point. double largest_input = 0; for (auto stop : stops) { if (stop.input.has_value()) { if (stop.input.value() < largest_input) { stop.input = largest_input; } else { largest_input = stop.input.value(); } } } // 4. If any control point still lacks an input progress value, // then for each contiguous run of such control points, // set their input progress values so that they are evenly spaced // between the preceding and following control points with input progress values. Optional run_start_idx; for (size_t idx = 0; idx < stops.size(); idx++) { auto stop = stops[idx]; if (stop.input.has_value() && run_start_idx.has_value()) { // Note: this stop is immediately after a run // set inputs of [start, idx-1] stops to be evenly spaced between start-1 and idx auto start_input = stops[run_start_idx.value() - 1].input.value(); auto end_input = stops[idx].input.value(); auto run_stop_count = idx - run_start_idx.value() + 1; auto delta = (end_input - start_input) / run_stop_count; for (size_t run_idx = 0; run_idx < run_stop_count; run_idx++) { stops[run_idx + run_start_idx.value() - 1].input = start_input + delta * run_idx; } run_start_idx = {}; } else if (!stop.input.has_value() && !run_start_idx.has_value()) { // Note: this stop is the start of a run run_start_idx = idx; } } this->stops = move(stops); } // https://drafts.csswg.org/css-easing/#linear-easing-function-output double EasingStyleValue::Linear::evaluate_at(double input_progress, bool before_flag) const { // To calculate linear easing output progress for a given linear easing function func, // an input progress value inputProgress, and an optional before flag (defaulting to false), // perform the following: // 1. Let points be func’s control points. // 2. If points holds only a single item, return the output progress value of that item. if (stops.size() == 1) return stops[0].output; // 3. If inputProgress matches the input progress value of the first point in points, // and the before flag is true, return the first point’s output progress value. if (input_progress == stops[0].input.value() && before_flag) return stops[0].output; // 4. If inputProgress matches the input progress value of at least one point in points, // return the output progress value of the last such point. auto maybe_match = stops.last_matching([&](auto& stop) { return input_progress == stop.input.value(); }); if (maybe_match.has_value()) return maybe_match->output; // 5. Otherwise, find two control points in points, A and B, which will be used for interpolation: Stop A; Stop B; if (input_progress < stops[0].input.value()) { // 1. If inputProgress is smaller than any input progress value in points, // let A and B be the first two items in points. // If A and B have the same input progress value, return A’s output progress value. A = stops[0]; B = stops[1]; if (A.input == B.input) return A.output; } else if (input_progress > stops.last().input.value()) { // 2. If inputProgress is larger than any input progress value in points, // let A and B be the last two items in points. // If A and B have the same input progress value, return B’s output progress value. A = stops[stops.size() - 2]; B = stops[stops.size() - 1]; if (A.input == B.input) return B.output; } else { // 3. Otherwise, let A be the last control point whose input progress value is smaller than inputProgress, // and let B be the first control point whose input progress value is larger than inputProgress. A = stops.last_matching([&](auto& stop) { return stop.input.value() < input_progress; }).value(); B = stops.first_matching([&](auto& stop) { return stop.input.value() > input_progress; }).value(); } // 6. Linearly interpolate (or extrapolate) inputProgress along the line defined by A and B, and return the result. auto factor = (input_progress - A.input.value()) / (B.input.value() - A.input.value()); return A.output + factor * (B.output - A.output); } // https://drafts.csswg.org/css-easing/#linear-easing-function-serializing String EasingStyleValue::Linear::to_string() const { // The linear keyword is serialized as itself. if (*this == identity()) return "linear"_string; // To serialize a linear() function: // 1. Let s be the string "linear(". StringBuilder builder; builder.append("linear("sv); // 2. Serialize each control point of the function, // concatenate the results using the separator ", ", // and append the result to s. bool first = true; for (auto stop : stops) { if (first) { first = false; } else { builder.append(", "sv); } // To serialize a linear() control point: // 1. Let s be the serialization, as a , of the control point’s output progress value. builder.appendff("{}", stop.output); // 2. If the control point originally lacked an input progress value, return s. // 3. Otherwise, append " " (U+0020 SPACE) to s, // then serialize the control point’s input progress value as a and append it to s. if (stop.had_explicit_input) { builder.appendff(" {}%", stop.input.value() * 100); } // 4. Return s. } // 4. Append ")" to s, and return it. builder.append(')'); return MUST(builder.to_string()); } double EasingStyleValue::CubicBezier::evaluate_at(double input_progress, bool) const { constexpr static auto cubic_bezier_at = [](double x1, double x2, double t) { auto a = 1.0 - 3.0 * x2 + 3.0 * x1; auto b = 3.0 * x2 - 6.0 * x1; auto c = 3.0 * x1; auto t2 = t * t; auto t3 = t2 * t; return (a * t3) + (b * t2) + (c * t); }; // https://www.w3.org/TR/css-easing-1/#cubic-bezier-algo // For input progress values outside the range [0, 1], the curve is extended infinitely using tangent of the curve // at the closest endpoint as follows: // - For input progress values less than zero, if (input_progress < 0.0) { // 1. If the x value of P1 is greater than zero, use a straight line that passes through P1 and P0 as the // tangent. if (x1 > 0.0) return y1 / x1 * input_progress; // 2. Otherwise, if the x value of P2 is greater than zero, use a straight line that passes through P2 and P0 as // the tangent. if (x2 > 0.0) return y2 / x2 * input_progress; // 3. Otherwise, let the output progress value be zero for all input progress values in the range [-∞, 0). return 0.0; } // - For input progress values greater than one, if (input_progress > 1.0) { // 1. If the x value of P2 is less than one, use a straight line that passes through P2 and P3 as the tangent. if (x2 < 1.0) return (1.0 - y2) / (1.0 - x2) * (input_progress - 1.0) + 1.0; // 2. Otherwise, if the x value of P1 is less than one, use a straight line that passes through P1 and P3 as the // tangent. if (x1 < 1.0) return (1.0 - y1) / (1.0 - x1) * (input_progress - 1.0) + 1.0; // 3. Otherwise, let the output progress value be one for all input progress values in the range (1, ∞]. return 1.0; } // Note: The spec does not specify the precise algorithm for calculating values in the range [0, 1]: // "The evaluation of this curve is covered in many sources such as [FUND-COMP-GRAPHICS]." auto x = input_progress; auto solve = [&](auto t) { auto x = cubic_bezier_at(x1, x2, t); auto y = cubic_bezier_at(y1, y2, t); return CubicBezier::CachedSample { x, y, t }; }; if (m_cached_x_samples.is_empty()) m_cached_x_samples.append(solve(0.)); size_t nearby_index = 0; if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) { if (x - sample.x >= NumericLimits::epsilon()) return 1; if (x - sample.x <= NumericLimits::epsilon()) return -1; return 0; })) return found->y; if (nearby_index == m_cached_x_samples.size() || nearby_index + 1 == m_cached_x_samples.size()) { // Produce more samples until we have enough. auto last_t = m_cached_x_samples.last().t; auto last_x = m_cached_x_samples.last().x; while (last_x <= x && last_t < 1.0) { last_t += 1. / 60.; auto solution = solve(last_t); m_cached_x_samples.append(solution); last_x = solution.x; } if (auto found = binary_search(m_cached_x_samples, x, &nearby_index, [](auto x, auto& sample) { if (x - sample.x >= NumericLimits::epsilon()) return 1; if (x - sample.x <= NumericLimits::epsilon()) return -1; return 0; })) return found->y; } // We have two samples on either side of the x value we want, so we can linearly interpolate between them. auto& sample1 = m_cached_x_samples[nearby_index]; auto& sample2 = m_cached_x_samples[nearby_index + 1]; auto factor = (x - sample1.x) / (sample2.x - sample1.x); return sample1.y + factor * (sample2.y - sample1.y); } String EasingStyleValue::CubicBezier::to_string() const { StringBuilder builder; if (*this == CubicBezier::ease()) { builder.append("ease"sv); } else if (*this == CubicBezier::ease_in()) { builder.append("ease-in"sv); } else if (*this == CubicBezier::ease_out()) { builder.append("ease-out"sv); } else if (*this == CubicBezier::ease_in_out()) { builder.append("ease-in-out"sv); } else { builder.appendff("cubic-bezier({}, {}, {}, {})", x1, y1, x2, y2); } return MUST(builder.to_string()); } double EasingStyleValue::Steps::evaluate_at(double input_progress, bool before_flag) const { // https://www.w3.org/TR/css-easing-1/#step-easing-algo // 1. Calculate the current step as floor(input progress value × steps). auto current_step = floor(input_progress * number_of_intervals); // 2. If the step position property is one of: // - jump-start, // - jump-both, // increment current step by one. if (position == Steps::Position::JumpStart || position == Steps::Position::Start || position == Steps::Position::JumpBoth) current_step += 1; // 3. If both of the following conditions are true: // - the before flag is set, and // - input progress value × steps mod 1 equals zero (that is, if input progress value × steps is integral), then // decrement current step by one. auto step_progress = input_progress * number_of_intervals; if (before_flag && trunc(step_progress) == step_progress) current_step -= 1; // 4. If input progress value ≥ 0 and current step < 0, let current step be zero. if (input_progress >= 0.0 && current_step < 0.0) current_step = 0.0; // 5. Calculate jumps based on the step position as follows: // jump-start or jump-end -> steps // jump-none -> steps - 1 // jump-both -> steps + 1 auto jumps = number_of_intervals; if (position == Steps::Position::JumpNone) { jumps--; } else if (position == Steps::Position::JumpBoth) { jumps++; } // 6. If input progress value ≤ 1 and current step > jumps, let current step be jumps. if (input_progress <= 1.0 && current_step > jumps) current_step = jumps; // 7. The output progress value is current step / jumps. return current_step / jumps; } String EasingStyleValue::Steps::to_string() const { StringBuilder builder; if (*this == Steps::step_start()) { builder.append("step-start"sv); } else if (*this == Steps::step_end()) { builder.append("step-end"sv); } else { auto position = [&] -> Optional { switch (this->position) { case Steps::Position::JumpStart: return "jump-start"sv; case Steps::Position::JumpNone: return "jump-none"sv; case Steps::Position::JumpBoth: return "jump-both"sv; case Steps::Position::Start: return "start"sv; default: return {}; } }(); if (position.has_value()) { builder.appendff("steps({}, {})", number_of_intervals, position.value()); } else { builder.appendff("steps({})", number_of_intervals); } } return MUST(builder.to_string()); } double EasingStyleValue::Function::evaluate_at(double input_progress, bool before_flag) const { return visit( [&](auto const& curve) { return curve.evaluate_at(input_progress, before_flag); }); } String EasingStyleValue::Function::to_string() const { return visit( [&](auto const& curve) { return curve.to_string(); }); } }