/* * Copyright (c) 2023, MacDue * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif // This a pretty naive implementation of edge-flag scanline AA. // The paper lists many possible optimizations, maybe implement one? (FIXME!) // https://mlab.taik.fi/~kkallio/antialiasing/EdgeFlagAA.pdf // This currently implements: // - The scanline buffer optimization (only allocate one scanline) // Possible other optimizations according to the paper: // - Using fixed point numbers // - Edge tracking // - Mask tracking // - Loop unrolling (compilers might handle this better now, the paper is from 2007) // Optimizations I think we could add: // - Using fast_u32_fills() for runs of solid colors // - Clipping the plotted edges earlier namespace Gfx { static Vector prepare_edges(ReadonlySpan lines, unsigned samples_per_pixel, FloatPoint origin) { Vector edges; edges.ensure_capacity(lines.size()); for (auto& line : lines) { auto p0 = line.a() - origin; auto p1 = line.b() - origin; p0.scale_by(1, samples_per_pixel); p1.scale_by(1, samples_per_pixel); i8 winding = -1; if (p0.y() > p1.y()) { swap(p0, p1); } else { winding = 1; } if (p0.y() == p1.y()) continue; auto min_y = static_cast(p0.y()); auto max_y = static_cast(p1.y()); float start_x = p0.x(); float end_x = p1.x(); auto dx = end_x - start_x; auto dy = max_y - min_y; auto dxdy = dx / dy; edges.unchecked_append(Detail::Edge { start_x, min_y, max_y, dxdy, winding, nullptr }); } return edges; } template EdgeFlagPathRasterizer::EdgeFlagPathRasterizer(IntSize size) : m_size(size.width() + 1, size.height() + 1) { m_scanline.resize(m_size.width()); m_edge_table.resize(m_size.height()); } template void EdgeFlagPathRasterizer::fill(Painter& painter, Path const& path, Color color, Painter::WindingRule winding_rule, FloatPoint offset) { fill_internal(painter, path, color, winding_rule, offset); } template void EdgeFlagPathRasterizer::fill(Painter& painter, Path const& path, PaintStyle const& style, float opacity, Painter::WindingRule winding_rule, FloatPoint offset) { style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) { if (opacity == 0.0f) return; if (opacity != 1.0f) { return fill_internal( painter, path, [=, sampler = move(sampler)](IntPoint point) { return sampler(point).with_opacity(opacity); }, winding_rule, offset); } return fill_internal(painter, path, move(sampler), winding_rule, offset); }); } template void EdgeFlagPathRasterizer::fill_internal(Painter& painter, Path const& path, auto color_or_function, Painter::WindingRule winding_rule, FloatPoint offset) { // FIXME: Figure out how painter scaling works here... VERIFY(painter.scale() == 1); auto bounding_box = enclosing_int_rect(path.bounding_box().translated(offset)); auto dest_rect = bounding_box.translated(painter.translation()); auto origin = bounding_box.top_left().to_type() - offset; m_blit_origin = dest_rect.top_left(); m_clip = dest_rect.intersected(painter.clip_rect()); if (m_clip.is_empty()) return; auto& lines = path.split_lines(); if (lines.is_empty()) return; auto edges = prepare_edges(lines, SamplesPerPixel, origin); int min_scanline = m_size.height(); int max_scanline = 0; for (auto& edge : edges) { int start_scanline = edge.min_y / SamplesPerPixel; int end_scanline = edge.max_y / SamplesPerPixel; // Create a linked-list of edges starting on this scanline: edge.next_edge = m_edge_table[start_scanline]; m_edge_table[start_scanline] = &edge; min_scanline = min(min_scanline, start_scanline); max_scanline = max(max_scanline, end_scanline); } // FIXME: We could probably clip some of the egde plotting if we know it won't be shown. // Though care would have to be taken to ensure the active edges are correct at the first drawn scaline. auto for_each_sample = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, auto callback) { for (int y = start_subpixel_y; y < end_subpixel_y; y++) { int xi = static_cast(edge.x + SubpixelSample::nrooks_subpixel_offsets[y]); if (xi < 0 || xi >= (int)m_scanline.size()) { // FIXME: For very low dxdy values, floating point error can push the sample outside the scanline. // This does not seem to make a visible difference most of the time (and is more likely from generated // paths, such as this 3D canvas demo: https://www.kevs3d.co.uk/dev/html5logo/). dbgln_if(FILL_PATH_DEBUG, "fill_path: Sample out of bounds: {} not in [0, {})", xi, m_scanline.size()); return; } SampleType sample = 1 << y; callback(xi, y, sample); edge.x += edge.dxdy; } }; Detail::Edge* active_edges = nullptr; if (winding_rule == Painter::WindingRule::EvenOdd) { auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y) { for_each_sample(edge, start_subpixel_y, end_subpixel_y, [&](int xi, int, SampleType sample) { m_scanline[xi] ^= sample; }); }; for (int scanline = min_scanline; scanline <= max_scanline; scanline++) { active_edges = plot_edges_for_scanline(scanline, plot_edge, active_edges); accumulate_even_odd_scanline(painter, scanline, color_or_function); } } else { VERIFY(winding_rule == Painter::WindingRule::Nonzero); // Only allocate the winding buffer if needed. // NOTE: non-zero fills are a fair bit less efficient. So if you can do an even-odd fill do that :^) if (m_windings.is_empty()) m_windings.resize(m_size.width()); auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y) { for_each_sample(edge, start_subpixel_y, end_subpixel_y, [&](int xi, int y, SampleType sample) { m_scanline[xi] |= sample; m_windings[xi].counts[y] += edge.winding; }); }; for (int scanline = min_scanline; scanline <= max_scanline; scanline++) { active_edges = plot_edges_for_scanline(scanline, plot_edge, active_edges); accumulate_non_zero_scanline(painter, scanline, color_or_function); } } } template Color EdgeFlagPathRasterizer::scanline_color(int scanline, int offset, u8 alpha, auto& color_or_function) { using ColorOrFunction = decltype(color_or_function); constexpr bool has_constant_color = IsSame, Color>; auto color = [&] { if constexpr (has_constant_color) { return color_or_function; } else { return color_or_function({ offset, scanline }); } }(); return color.with_alpha(color.alpha() * alpha / 255); } template Detail::Edge* EdgeFlagPathRasterizer::plot_edges_for_scanline(int scanline, auto plot_edge, Detail::Edge* active_edges) { auto y_subpixel = [](int y) { return y & (SamplesPerPixel - 1); }; auto* current_edge = active_edges; Detail::Edge* prev_edge = nullptr; // First iterate over the edge in the active edge table, these are edges added on earlier scanlines, // that have not yet reached their end scanline. while (current_edge) { int end_scanline = current_edge->max_y / SamplesPerPixel; if (scanline == end_scanline) { // This edge ends this scanline. plot_edge(*current_edge, 0, y_subpixel(current_edge->max_y)); // Remove this edge from the AET current_edge = current_edge->next_edge; if (prev_edge) prev_edge->next_edge = current_edge; else active_edges = current_edge; } else { // This egde sticks around for a few more scanlines. plot_edge(*current_edge, 0, SamplesPerPixel); prev_edge = current_edge; current_edge = current_edge->next_edge; } } // Next, iterate over new edges for this line. If active_edges was null this also becomes the new // AET. Edges new will be appended here. current_edge = m_edge_table[scanline]; while (current_edge) { int end_scanline = current_edge->max_y / SamplesPerPixel; if (scanline == end_scanline) { // This edge will end this scanlines (no need to add to AET). plot_edge(*current_edge, y_subpixel(current_edge->min_y), y_subpixel(current_edge->max_y)); } else { // This edge will live on for a few more scanlines. plot_edge(*current_edge, y_subpixel(current_edge->min_y), SamplesPerPixel); // Add this edge to the AET if (prev_edge) prev_edge->next_edge = current_edge; else active_edges = current_edge; prev_edge = current_edge; } current_edge = current_edge->next_edge; } if (prev_edge) prev_edge->next_edge = nullptr; m_edge_table[scanline] = nullptr; return active_edges; } template void EdgeFlagPathRasterizer::write_pixel(Painter& painter, int scanline, int offset, SampleType sample, auto& color_or_function) { auto dest = IntPoint { offset, scanline } + m_blit_origin; if (!m_clip.contains_horizontally(dest.x())) return; // FIXME: We could detect runs of full coverage and use fast_u32_fills for those rather than many set_pixel() calls. auto coverage = SubpixelSample::compute_coverage(sample); if (coverage) { auto paint_color = scanline_color(scanline, offset, coverage_to_alpha(coverage), color_or_function); painter.set_physical_pixel(dest, paint_color, true); } } template void EdgeFlagPathRasterizer::accumulate_even_odd_scanline(Painter& painter, int scanline, auto& color_or_function) { auto dest_y = m_blit_origin.y() + scanline; if (!m_clip.contains_vertically(dest_y)) { // FIXME: This memset only really needs to be done on transition from clipped to not clipped, // or not at all if we properly clipped egde plotting. memset(m_scanline.data(), 0, sizeof(SampleType) * m_scanline.size()); return; } SampleType sample = 0; for (int x = 0; x < m_size.width(); x += 1) { sample ^= m_scanline[x]; write_pixel(painter, scanline, x, sample, color_or_function); m_scanline[x] = 0; } } template void EdgeFlagPathRasterizer::accumulate_non_zero_scanline(Painter& painter, int scanline, auto& color_or_function) { // NOTE: Same FIXMEs apply from accumulate_even_odd_scanline() auto dest_y = m_blit_origin.y() + scanline; if (!m_clip.contains_vertically(dest_y)) { memset(m_scanline.data(), 0, sizeof(SampleType) * m_scanline.size()); memset(m_windings.data(), 0, sizeof(WindingCounts) * m_windings.size()); return; } SampleType sample = 0; WindingCounts sum_winding = {}; for (int x = 0; x < m_size.width(); x += 1) { if (auto edges = m_scanline[x]) { // We only need to process the windings when we hit some edges. for (auto y_sub = 0u; y_sub < SamplesPerPixel; y_sub++) { auto subpixel_bit = 1 << y_sub; if (edges & subpixel_bit) { auto winding = m_windings[x].counts[y_sub]; auto previous_winding_count = sum_winding.counts[y_sub]; sum_winding.counts[y_sub] += winding; // Toggle fill on change to/from zero if ((previous_winding_count == 0 && sum_winding.counts[y_sub] != 0) || (sum_winding.counts[y_sub] == 0 && previous_winding_count != 0)) { sample ^= subpixel_bit; } } } } write_pixel(painter, scanline, x, sample, color_or_function); m_scanline[x] = 0; m_windings[x] = {}; } } static IntSize path_bounds(Gfx::Path const& path) { return enclosing_int_rect(path.bounding_box()).size(); } // Note: The AntiAliasingPainter and Painter now perform the same antialiasing, // since it would be harder to turn it off for the standard painter. // The samples are reduced to 8 for Gfx::Painter though as a "speedy" option. void Painter::fill_path(Path const& path, Color color, WindingRule winding_rule) { EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path)); rasterizer.fill(*this, path, color, winding_rule); } void Painter::fill_path(Path const& path, PaintStyle const& paint_style, float opacity, Painter::WindingRule winding_rule) { EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path)); rasterizer.fill(*this, path, paint_style, opacity, winding_rule); } void AntiAliasingPainter::fill_path(Path const& path, Color color, Painter::WindingRule winding_rule) { EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path)); rasterizer.fill(m_underlying_painter, path, color, winding_rule, m_transform.translation()); } void AntiAliasingPainter::fill_path(Path const& path, PaintStyle const& paint_style, float opacity, Painter::WindingRule winding_rule) { EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path)); rasterizer.fill(m_underlying_painter, path, paint_style, opacity, winding_rule, m_transform.translation()); } template class EdgeFlagPathRasterizer<8>; template class EdgeFlagPathRasterizer<16>; template class EdgeFlagPathRasterizer<32>; }