/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ /* * Really really *really* Q&D malloc() and free() implementations * just to get going. Don't ever let anyone see this shit. :^) */ #include #include #include #include #include #include #include #include #include #include #include #include #if ARCH(I386) static constexpr size_t CHUNK_SIZE = 32; #else static constexpr size_t CHUNK_SIZE = 64; #endif #define POOL_SIZE (2 * MiB) #define ETERNAL_RANGE_SIZE (4 * MiB) namespace std { const nothrow_t nothrow; } static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace() struct KmallocSubheap { KmallocSubheap(u8* base, size_t size) : allocator(base, size) { } IntrusiveListNode list_node; Heap allocator; }; struct KmallocGlobalData { static constexpr size_t minimum_subheap_size = 1 * MiB; KmallocGlobalData(u8* initial_heap, size_t initial_heap_size) { add_subheap(initial_heap, initial_heap_size); } void add_subheap(u8* storage, size_t storage_size) { dbgln("Adding kmalloc subheap @ {} with size {}", storage, storage_size); static_assert(sizeof(KmallocSubheap) <= PAGE_SIZE); auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE); subheaps.append(*subheap); } void* allocate(size_t size) { VERIFY(!expansion_in_progress); for (auto& subheap : subheaps) { if (auto* ptr = subheap.allocator.allocate(size)) return ptr; } if (!try_expand(size)) { PANIC("OOM when trying to expand kmalloc heap."); } return allocate(size); } void deallocate(void* ptr) { VERIFY(!expansion_in_progress); for (auto& subheap : subheaps) { if (subheap.allocator.contains(ptr)) { subheap.allocator.deallocate(ptr); return; } } PANIC("Bogus pointer {:p} passed to kfree()", ptr); } size_t allocated_bytes() const { size_t total = 0; for (auto const& subheap : subheaps) total += subheap.allocator.allocated_bytes(); return total; } size_t free_bytes() const { size_t total = 0; for (auto const& subheap : subheaps) total += subheap.allocator.free_bytes(); return total; } bool try_expand(size_t allocation_request) { VERIFY(!expansion_in_progress); TemporaryChange change(expansion_in_progress, true); auto new_subheap_base = expansion_data->next_virtual_address; Checked padded_allocation_request = allocation_request; padded_allocation_request *= 2; padded_allocation_request += PAGE_SIZE; if (padded_allocation_request.has_overflow()) { PANIC("Integer overflow during kmalloc heap expansion"); } size_t new_subheap_size = max(minimum_subheap_size, Memory::page_round_up(padded_allocation_request.value())); dbgln("Unable to allocate {}, expanding kmalloc heap", allocation_request); if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) { // FIXME: Dare to return false and allow kmalloc() to fail! PANIC("Out of address space when expanding kmalloc heap."); } auto physical_pages_or_error = MM.commit_user_physical_pages(new_subheap_size / PAGE_SIZE); if (physical_pages_or_error.is_error()) { // FIXME: Dare to return false! PANIC("Out of physical pages when expanding kmalloc heap."); } auto physical_pages = physical_pages_or_error.release_value(); expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size); auto cpu_supports_nx = Processor::current().has_feature(CPUFeature::NX); SpinlockLocker mm_locker(Memory::s_mm_lock); SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock()); for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) { // FIXME: We currently leak physical memory when mapping it into the kmalloc heap. auto& page = physical_pages.take_one().leak_ref(); auto* pte = MM.pte(MM.kernel_page_directory(), vaddr); VERIFY(pte); pte->set_physical_page_base(page.paddr().get()); pte->set_global(true); pte->set_user_allowed(false); pte->set_writable(true); if (cpu_supports_nx) pte->set_execute_disabled(true); pte->set_present(true); } MM.flush_tlb(&MM.kernel_page_directory(), new_subheap_base, new_subheap_size / PAGE_SIZE); add_subheap(new_subheap_base.as_ptr(), new_subheap_size); return true; } void enable_expansion() { // FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit. auto virtual_range = MM.kernel_page_directory().range_allocator().try_allocate_anywhere(64 * MiB, 1 * MiB); expansion_data = KmallocGlobalData::ExpansionData { .virtual_range = virtual_range.value(), .next_virtual_address = virtual_range.value().base(), }; // Make sure the entire kmalloc VM range is backed by page tables. // This avoids having to deal with lazy page table allocation during heap expansion. SpinlockLocker mm_locker(Memory::s_mm_lock); SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock()); for (auto vaddr = virtual_range.value().base(); vaddr < virtual_range.value().end(); vaddr = vaddr.offset(PAGE_SIZE)) { MM.ensure_pte(MM.kernel_page_directory(), vaddr); } } struct ExpansionData { Memory::VirtualRange virtual_range; VirtualAddress next_virtual_address; }; Optional expansion_data; IntrusiveList<&KmallocSubheap::list_node> subheaps; bool expansion_in_progress { false }; }; READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global; alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)]; // Treat the heap as logically separate from .bss __attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE]; __attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE]; static size_t g_kmalloc_bytes_eternal = 0; static size_t g_kmalloc_call_count; static size_t g_kfree_call_count; static size_t g_nested_kfree_calls; bool g_dump_kmalloc_stacks; static u8* s_next_eternal_ptr; READONLY_AFTER_INIT static u8* s_end_of_eternal_range; void kmalloc_enable_expand() { g_kmalloc_global->enable_expansion(); } static inline void kmalloc_verify_nospinlock_held() { // Catch bad callers allocating under spinlock. if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) { VERIFY(!Processor::in_critical()); } } UNMAP_AFTER_INIT void kmalloc_init() { // Zero out heap since it's placed after end_of_kernel_bss. memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap)); memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap)); g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(kmalloc_pool_heap, sizeof(kmalloc_pool_heap)); s_lock.initialize(); s_next_eternal_ptr = kmalloc_eternal_heap; s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap); } void* kmalloc_eternal(size_t size) { kmalloc_verify_nospinlock_held(); size = round_up_to_power_of_two(size, sizeof(void*)); SpinlockLocker lock(s_lock); void* ptr = s_next_eternal_ptr; s_next_eternal_ptr += size; VERIFY(s_next_eternal_ptr < s_end_of_eternal_range); g_kmalloc_bytes_eternal += size; return ptr; } void* kmalloc(size_t size) { kmalloc_verify_nospinlock_held(); SpinlockLocker lock(s_lock); ++g_kmalloc_call_count; if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) { dbgln("kmalloc({})", size); Kernel::dump_backtrace(); } void* ptr = g_kmalloc_global->allocate(size); Thread* current_thread = Thread::current(); if (!current_thread) current_thread = Processor::idle_thread(); if (current_thread) PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr); return ptr; } void kfree_sized(void* ptr, size_t size) { (void)size; return kfree(ptr); } void kfree(void* ptr) { if (!ptr) return; kmalloc_verify_nospinlock_held(); SpinlockLocker lock(s_lock); ++g_kfree_call_count; ++g_nested_kfree_calls; if (g_nested_kfree_calls == 1) { Thread* current_thread = Thread::current(); if (!current_thread) current_thread = Processor::idle_thread(); if (current_thread) PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr); } g_kmalloc_global->deallocate(ptr); --g_nested_kfree_calls; } size_t kmalloc_good_size(size_t size) { return size; } void* kmalloc_aligned(size_t size, size_t alignment) { VERIFY(alignment <= 4096); Checked real_allocation_size = size; real_allocation_size += alignment; real_allocation_size += sizeof(ptrdiff_t) + sizeof(size_t); void* ptr = kmalloc(real_allocation_size.value()); if (ptr == nullptr) return nullptr; size_t max_addr = (size_t)ptr + alignment; void* aligned_ptr = (void*)(max_addr - (max_addr % alignment)); ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr); ((size_t*)aligned_ptr)[-2] = real_allocation_size.value(); return aligned_ptr; } void* operator new(size_t size) { void* ptr = kmalloc(size); VERIFY(ptr); return ptr; } void* operator new(size_t size, const std::nothrow_t&) noexcept { return kmalloc(size); } void* operator new(size_t size, std::align_val_t al) { void* ptr = kmalloc_aligned(size, (size_t)al); VERIFY(ptr); return ptr; } void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept { return kmalloc_aligned(size, (size_t)al); } void* operator new[](size_t size) { void* ptr = kmalloc(size); VERIFY(ptr); return ptr; } void* operator new[](size_t size, const std::nothrow_t&) noexcept { return kmalloc(size); } void operator delete(void*) noexcept { // All deletes in kernel code should have a known size. VERIFY_NOT_REACHED(); } void operator delete(void* ptr, size_t size) noexcept { return kfree_sized(ptr, size); } void operator delete(void* ptr, size_t, std::align_val_t) noexcept { return kfree_aligned(ptr); } void operator delete[](void*) noexcept { // All deletes in kernel code should have a known size. VERIFY_NOT_REACHED(); } void operator delete[](void* ptr, size_t size) noexcept { return kfree_sized(ptr, size); } void get_kmalloc_stats(kmalloc_stats& stats) { SpinlockLocker lock(s_lock); stats.bytes_allocated = g_kmalloc_global->allocated_bytes(); stats.bytes_free = g_kmalloc_global->free_bytes(); stats.bytes_eternal = g_kmalloc_bytes_eternal; stats.kmalloc_call_count = g_kmalloc_call_count; stats.kfree_call_count = g_kfree_call_count; }