/* * Copyright (c) 2021, Stephan Unverwerth * Copyright (c) 2021, Jesse Buhagiar * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include namespace SoftGPU { using IntVector2 = Gfx::Vector2; using IntVector3 = Gfx::Vector3; static constexpr int RASTERIZER_BLOCK_SIZE = 8; constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c) { return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x())); } template constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords) { return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z(); } template constexpr static T mix(const T& x, const T& y, float interp) { return x * (1 - interp) + y * interp; } ALWAYS_INLINE constexpr static Gfx::RGBA32 to_rgba32(const FloatVector4& v) { auto clamped = v.clamped(0, 1); u8 r = clamped.x() * 255; u8 g = clamped.y() * 255; u8 b = clamped.z() * 255; u8 a = clamped.w() * 255; return a << 24 | r << 16 | g << 8 | b; } static FloatVector4 to_vec4(Gfx::RGBA32 rgba) { return { ((rgba >> 16) & 0xff) / 255.0f, ((rgba >> 8) & 0xff) / 255.0f, (rgba & 0xff) / 255.0f, ((rgba >> 24) & 0xff) / 255.0f }; } static Gfx::IntRect scissor_box_to_window_coordinates(Gfx::IntRect const& scissor_box, Gfx::IntRect const& window_rect) { return scissor_box.translated(0, window_rect.height() - 2 * scissor_box.y() - scissor_box.height()); } static constexpr void setup_blend_factors(GLenum mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color) { constant = { 0.0f, 0.0f, 0.0f, 0.0f }; src_alpha = 0; dst_alpha = 0; src_color = 0; dst_color = 0; switch (mode) { case GL_ZERO: break; case GL_ONE: constant = { 1.0f, 1.0f, 1.0f, 1.0f }; break; case GL_SRC_COLOR: src_color = 1; break; case GL_ONE_MINUS_SRC_COLOR: constant = { 1.0f, 1.0f, 1.0f, 1.0f }; src_color = -1; break; case GL_SRC_ALPHA: src_alpha = 1; break; case GL_ONE_MINUS_SRC_ALPHA: constant = { 1.0f, 1.0f, 1.0f, 1.0f }; src_alpha = -1; break; case GL_DST_ALPHA: dst_alpha = 1; break; case GL_ONE_MINUS_DST_ALPHA: constant = { 1.0f, 1.0f, 1.0f, 1.0f }; dst_alpha = -1; break; case GL_DST_COLOR: dst_color = 1; break; case GL_ONE_MINUS_DST_COLOR: constant = { 1.0f, 1.0f, 1.0f, 1.0f }; dst_color = -1; break; case GL_SRC_ALPHA_SATURATE: // FIXME: How do we implement this? break; default: VERIFY_NOT_REACHED(); } } template static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const Triangle& triangle, PS pixel_shader) { // Since the algorithm is based on blocks of uniform size, we need // to ensure that our render_target size is actually a multiple of the block size VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0); VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0); // Calculate area of the triangle for later tests IntVector2 v0 { (int)triangle.vertices[0].position.x(), (int)triangle.vertices[0].position.y() }; IntVector2 v1 { (int)triangle.vertices[1].position.x(), (int)triangle.vertices[1].position.y() }; IntVector2 v2 { (int)triangle.vertices[2].position.x(), (int)triangle.vertices[2].position.y() }; int area = edge_function(v0, v1, v2); if (area == 0) return; float one_over_area = 1.0f / area; FloatVector4 src_constant {}; float src_factor_src_alpha = 0; float src_factor_dst_alpha = 0; float src_factor_src_color = 0; float src_factor_dst_color = 0; FloatVector4 dst_constant {}; float dst_factor_src_alpha = 0; float dst_factor_dst_alpha = 0; float dst_factor_src_color = 0; float dst_factor_dst_color = 0; if (options.enable_blending) { setup_blend_factors( options.blend_source_factor, src_constant, src_factor_src_alpha, src_factor_dst_alpha, src_factor_src_color, src_factor_dst_color); setup_blend_factors( options.blend_destination_factor, dst_constant, dst_factor_src_alpha, dst_factor_dst_alpha, dst_factor_src_color, dst_factor_dst_color); } // Obey top-left rule: // This sets up "zero" for later pixel coverage tests. // Depending on where on the triangle the edge is located // it is either tested against 0 or 1, effectively // turning "< 0" into "<= 0" IntVector3 zero { 1, 1, 1 }; if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x())) zero.set_z(0); if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x())) zero.set_x(0); if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x())) zero.set_y(0); // This function calculates the 3 edge values for the pixel relative to the triangle. auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 { return { edge_function(v1, v2, p), edge_function(v2, v0, p), edge_function(v0, v1, p), }; }; // This function tests whether a point as identified by its 3 edge values lies within the triangle auto test_point = [zero](const IntVector3& edges) -> bool { return edges.x() >= zero.x() && edges.y() >= zero.y() && edges.z() >= zero.z(); }; // Calculate block-based bounds auto render_bounds = render_target.rect(); if (options.scissor_enabled) render_bounds.intersect(scissor_box_to_window_coordinates(options.scissor_box, render_target.rect())); int const block_padding = RASTERIZER_BLOCK_SIZE - 1; // clang-format off int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x())) / RASTERIZER_BLOCK_SIZE; int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x())) + block_padding) / RASTERIZER_BLOCK_SIZE; int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y())) / RASTERIZER_BLOCK_SIZE; int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y())) + block_padding) / RASTERIZER_BLOCK_SIZE; // clang-format on u8 pixel_mask[RASTERIZER_BLOCK_SIZE]; static_assert(RASTERIZER_BLOCK_SIZE <= sizeof(decltype(*pixel_mask)) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits"); FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE]; // FIXME: implement stencil testing // Iterate over all blocks within the bounds of the triangle for (int by = by0; by < by1; by++) { for (int bx = bx0; bx < bx1; bx++) { // Edge values of the 4 block corners // clang-format off auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE }); auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE }); auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE }); auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE }); // clang-format on // If the whole block is outside any of the triangle edges we can discard it completely // We test this by and'ing the relevant edge function values together for all block corners // and checking if the negative sign bit is set for all of them if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000) continue; if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000) continue; if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000) continue; // edge value derivatives auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE; auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE; // step edge value after each horizontal span: 1 down, BLOCK_SIZE left auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE; int x0 = bx * RASTERIZER_BLOCK_SIZE; int y0 = by * RASTERIZER_BLOCK_SIZE; // Generate the coverage mask if (!options.scissor_enabled && test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) { // The block is fully contained within the triangle. Fill the mask with all 1s for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) pixel_mask[y] = -1; } else { // The block overlaps at least one triangle edge. // We need to test coverage of every pixel within the block. auto coords = b0; for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) { pixel_mask[y] = 0; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) { if (test_point(coords) && (!options.scissor_enabled || render_bounds.contains(x0 + x, y0 + y))) pixel_mask[y] |= 1 << x; } } } // AND the depth mask onto the coverage mask if (options.enable_depth_test) { int z_pass_count = 0; auto coords = b0; for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) { if (pixel_mask[y] == 0) { coords += dbdx * RASTERIZER_BLOCK_SIZE; continue; } auto* depth = &depth_buffer.scanline(y0 + y)[x0]; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) { if (~pixel_mask[y] & (1 << x)) continue; auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area; float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric); z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2; // FIXME: Also apply depth_offset_factor which depends on the depth gradient z += options.depth_offset_constant * NumericLimits::epsilon(); bool pass = false; switch (options.depth_func) { case GL_ALWAYS: pass = true; break; case GL_NEVER: pass = false; break; case GL_GREATER: pass = z > *depth; break; case GL_GEQUAL: pass = z >= *depth; break; case GL_NOTEQUAL: #ifdef __SSE__ pass = z != *depth; #else pass = bit_cast(z) != bit_cast(*depth); #endif break; case GL_EQUAL: #ifdef __SSE__ pass = z == *depth; #else // // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is // compiled for the i386 target. When we calculate our depth value to be stored in the buffer, // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually // used here the comparison fails. // This could be solved by using a `long double` for the depth buffer, however this would take // up significantly more space and is completely overkill for a depth buffer. As such, comparing // the first 32-bits of this depth value is "good enough" that if we get a hit on it being // equal, we can pretty much guarantee that it's actually equal. // pass = bit_cast(z) == bit_cast(*depth); #endif break; case GL_LEQUAL: pass = z <= *depth; break; case GL_LESS: pass = z < *depth; break; } if (!pass) { pixel_mask[y] ^= 1 << x; continue; } if (options.enable_depth_write) *depth = z; z_pass_count++; } } // Nice, no pixels passed the depth test -> block rejected by early z if (z_pass_count == 0) continue; } // We will not update the color buffer at all if (!options.color_mask || options.draw_buffer == GL_NONE) continue; // Draw the pixels according to the previously generated mask auto coords = b0; for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) { if (pixel_mask[y] == 0) { coords += dbdx * RASTERIZER_BLOCK_SIZE; continue; } auto* pixel = pixel_buffer[y]; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) { if (~pixel_mask[y] & (1 << x)) continue; // Perspective correct barycentric coordinates auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area; float interpolated_reciprocal_w = interpolate(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w(), barycentric); float interpolated_w = 1 / interpolated_reciprocal_w; barycentric = barycentric * FloatVector3(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w()) * interpolated_w; // FIXME: make this more generic. We want to interpolate more than just color and uv FloatVector4 vertex_color; if (options.shade_smooth) { vertex_color = interpolate( triangle.vertices[0].color, triangle.vertices[1].color, triangle.vertices[2].color, barycentric); } else { vertex_color = triangle.vertices[0].color; } auto uv = interpolate( triangle.vertices[0].tex_coord, triangle.vertices[1].tex_coord, triangle.vertices[2].tex_coord, barycentric); // Calculate depth of fragment for fog float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric); z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2; *pixel = pixel_shader(uv, vertex_color, z); } } if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) { // FIXME: I'm not sure if this is the right place to test this. // If we tested this right at the beginning of our rasterizer routine // we could skip a lot of work but the GL spec might disagree. if (options.alpha_test_func == AlphaTestFunction::Never) continue; for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) { auto src = pixel_buffer[y]; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) { if (~pixel_mask[y] & (1 << x)) continue; bool passed = true; switch (options.alpha_test_func) { case AlphaTestFunction::Less: passed = src->w() < options.alpha_test_ref_value; break; case AlphaTestFunction::Equal: passed = src->w() == options.alpha_test_ref_value; break; case AlphaTestFunction::LessOrEqual: passed = src->w() <= options.alpha_test_ref_value; break; case AlphaTestFunction::Greater: passed = src->w() > options.alpha_test_ref_value; break; case AlphaTestFunction::NotEqual: passed = src->w() != options.alpha_test_ref_value; break; case AlphaTestFunction::GreaterOrEqual: passed = src->w() >= options.alpha_test_ref_value; break; case AlphaTestFunction::Never: case AlphaTestFunction::Always: VERIFY_NOT_REACHED(); } if (!passed) pixel_mask[y] ^= (1 << x); } } } if (options.enable_blending) { // Blend color values from pixel_buffer into render_target for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) { auto src = pixel_buffer[y]; auto dst = &render_target.scanline(y + y0)[x0]; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) { if (~pixel_mask[y] & (1 << x)) continue; auto float_dst = to_vec4(*dst); auto src_factor = src_constant + *src * src_factor_src_color + FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha + float_dst * src_factor_dst_color + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha; auto dst_factor = dst_constant + *src * dst_factor_src_color + FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha + float_dst * dst_factor_dst_color + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha; *dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask); } } } else { // Copy color values from pixel_buffer into render_target for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) { auto src = pixel_buffer[y]; auto dst = &render_target.scanline(y + y0)[x0]; for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) { if (~pixel_mask[y] & (1 << x)) continue; *dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask); } } } } } } static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step) { int width = ((min_size.width() + step - 1) / step) * step; int height = ((min_size.height() + step - 1) / step) * step; return { width, height }; } Device::Device(const Gfx::IntSize& min_size) : m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors() } , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) } { m_options.scissor_box = m_render_target->rect(); } void Device::draw_primitives(GLenum primitive_type, FloatMatrix4x4 const& transform, FloatMatrix4x4 const& texture_matrix, Vector const& vertices, Vector const& enabled_texture_units) { // At this point, the user has effectively specified that they are done with defining the geometry // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview): // // 1. Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix // 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix // 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling) // 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates) // 5. The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates) // 6. The vertices are then sent off to the rasteriser and drawn to the screen float scr_width = m_render_target->width(); float scr_height = m_render_target->height(); m_triangle_list.clear_with_capacity(); m_processed_triangles.clear_with_capacity(); // Let's construct some triangles if (primitive_type == GL_TRIANGLES) { Triangle triangle; for (size_t i = 0; i < vertices.size(); i += 3) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); } } else if (primitive_type == GL_QUADS) { // We need to construct two triangles to form the quad Triangle triangle; VERIFY(vertices.size() % 4 == 0); for (size_t i = 0; i < vertices.size(); i += 4) { // Triangle 1 triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); // Triangle 2 triangle.vertices[0] = vertices.at(i + 2); triangle.vertices[1] = vertices.at(i + 3); triangle.vertices[2] = vertices.at(i); m_triangle_list.append(triangle); } } else if (primitive_type == GL_TRIANGLE_FAN || primitive_type == GL_POLYGON) { Triangle triangle; triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first for (size_t i = 1; i < vertices.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1 { triangle.vertices[1] = vertices.at(i); triangle.vertices[2] = vertices.at(i + 1); m_triangle_list.append(triangle); } } else if (primitive_type == GL_TRIANGLE_STRIP) { Triangle triangle; for (size_t i = 0; i < vertices.size() - 2; i++) { triangle.vertices[0] = vertices.at(i); triangle.vertices[1] = vertices.at(i + 1); triangle.vertices[2] = vertices.at(i + 2); m_triangle_list.append(triangle); } } // Now let's transform each triangle and send that to the GPU for (size_t i = 0; i < m_triangle_list.size(); i++) { Triangle& triangle = m_triangle_list.at(i); // First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix triangle.vertices[0].position = transform * triangle.vertices[0].position; triangle.vertices[1].position = transform * triangle.vertices[1].position; triangle.vertices[2].position = transform * triangle.vertices[2].position; // Apply texture transformation // FIXME: implement multi-texturing: texcoords should be stored per texture unit triangle.vertices[0].tex_coord = texture_matrix * triangle.vertices[0].tex_coord; triangle.vertices[1].tex_coord = texture_matrix * triangle.vertices[1].tex_coord; triangle.vertices[2].tex_coord = texture_matrix * triangle.vertices[2].tex_coord; // At this point, we're in clip space // Here's where we do the clipping. This is a really crude implementation of the // https://learnopengl.com/Getting-started/Coordinate-Systems // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL // will reconstruct the triangle as one or more triangles to fit inside the clipping range. " // // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER // Okay, let's do some face culling first m_clipped_vertices.clear_with_capacity(); m_clipped_vertices.append(triangle.vertices[0]); m_clipped_vertices.append(triangle.vertices[1]); m_clipped_vertices.append(triangle.vertices[2]); m_clipper.clip_triangle_against_frustum(m_clipped_vertices); if (m_clipped_vertices.size() < 3) continue; for (auto& vec : m_clipped_vertices) { // perspective divide float w = vec.position.w(); vec.position.set_x(vec.position.x() / w); vec.position.set_y(vec.position.y() / w); vec.position.set_z(vec.position.z() / w); vec.position.set_w(1 / w); // to screen space vec.position.set_x(scr_width / 2 + vec.position.x() * scr_width / 2); vec.position.set_y(scr_height / 2 - vec.position.y() * scr_height / 2); } Triangle tri; tri.vertices[0] = m_clipped_vertices[0]; for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) { tri.vertices[1] = m_clipped_vertices[i]; tri.vertices[2] = m_clipped_vertices[i + 1]; m_processed_triangles.append(tri); } } for (size_t i = 0; i < m_processed_triangles.size(); i++) { Triangle& triangle = m_processed_triangles.at(i); // Let's calculate the (signed) area of the triangle // https://cp-algorithms.com/geometry/oriented-triangle-area.html float dxAB = triangle.vertices[0].position.x() - triangle.vertices[1].position.x(); // A.x - B.x float dxBC = triangle.vertices[1].position.x() - triangle.vertices[2].position.x(); // B.X - C.x float dyAB = triangle.vertices[0].position.y() - triangle.vertices[1].position.y(); float dyBC = triangle.vertices[1].position.y() - triangle.vertices[2].position.y(); float area = (dxAB * dyBC) - (dxBC * dyAB); if (area == 0.0f) continue; if (m_options.enable_culling) { bool is_front = (m_options.front_face == GL_CCW ? area < 0 : area > 0); if (is_front && (m_options.culled_sides == GL_FRONT || m_options.culled_sides == GL_FRONT_AND_BACK)) continue; if (!is_front && (m_options.culled_sides == GL_BACK || m_options.culled_sides == GL_FRONT_AND_BACK)) continue; } if (area > 0) { swap(triangle.vertices[0], triangle.vertices[1]); } submit_triangle(triangle, enabled_texture_units); } } void Device::submit_triangle(const Triangle& triangle, Vector const& enabled_texture_units) { rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &enabled_texture_units](FloatVector4 const& uv, FloatVector4 const& color, float z) -> FloatVector4 { FloatVector4 fragment = color; for (size_t i : enabled_texture_units) { // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP auto const& sampler = m_samplers[i]; FloatVector4 texel = sampler.sample_2d({ uv.x(), uv.y() }); // FIXME: Implement more blend modes switch (sampler.config().fixed_function_texture_env_mode) { case TextureEnvMode::Modulate: default: fragment = fragment * texel; break; case TextureEnvMode::Replace: fragment = texel; break; case TextureEnvMode::Decal: { float src_alpha = fragment.w(); float one_minus_src_alpha = 1 - src_alpha; fragment.set_x(texel.x() * src_alpha + fragment.x() * one_minus_src_alpha); fragment.set_y(texel.y() * src_alpha + fragment.y() * one_minus_src_alpha); fragment.set_z(texel.z() * src_alpha + fragment.z() * one_minus_src_alpha); break; } } } // Calculate fog // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html if (m_options.fog_enabled) { float factor = 0.0f; switch (m_options.fog_mode) { case GL_LINEAR: factor = (m_options.fog_end - z) / (m_options.fog_end - m_options.fog_start); break; case GL_EXP: factor = exp(-((m_options.fog_density * z))); break; case GL_EXP2: factor = exp(-((m_options.fog_density * z) * (m_options.fog_density * z))); break; default: break; } // Mix texel with fog fragment = mix(m_options.fog_color, fragment, factor); } return fragment; }); } void Device::resize(const Gfx::IntSize& min_size) { wait_for_all_threads(); m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors(); m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size())); } void Device::clear_color(const FloatVector4& color) { wait_for_all_threads(); uint8_t r = static_cast(clamp(color.x(), 0.0f, 1.0f) * 255); uint8_t g = static_cast(clamp(color.y(), 0.0f, 1.0f) * 255); uint8_t b = static_cast(clamp(color.z(), 0.0f, 1.0f) * 255); uint8_t a = static_cast(clamp(color.w(), 0.0f, 1.0f) * 255); auto const fill_color = Gfx::Color(r, g, b, a); if (m_options.scissor_enabled) { auto fill_rect = m_render_target->rect(); fill_rect.intersect(scissor_box_to_window_coordinates(m_options.scissor_box, fill_rect)); Gfx::Painter painter { *m_render_target }; painter.fill_rect(fill_rect, fill_color); return; } m_render_target->fill(fill_color); } void Device::clear_depth(float depth) { wait_for_all_threads(); if (m_options.scissor_enabled) { m_depth_buffer->clear(scissor_box_to_window_coordinates(m_options.scissor_box, m_render_target->rect()), depth); return; } m_depth_buffer->clear(depth); } void Device::blit(Gfx::Bitmap const& source, int x, int y) { wait_for_all_threads(); Gfx::Painter painter { *m_render_target }; painter.blit({ x, y }, source, source.rect(), 1.0f, true); } void Device::blit_to(Gfx::Bitmap& target) { wait_for_all_threads(); Gfx::Painter painter { target }; painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false); } void Device::wait_for_all_threads() const { // FIXME: Wait for all render threads to finish when multithreading is being implemented } void Device::set_options(const RasterizerOptions& options) { wait_for_all_threads(); m_options = options; // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented } Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y) { // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height()) return 0; return m_render_target->scanline(y)[x]; } float Device::get_depthbuffer_value(int x, int y) { // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height()) return 1.0f; return m_depth_buffer->scanline(y)[x]; } NonnullRefPtr Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers) { VERIFY(width > 0); VERIFY(height > 0); VERIFY(depth > 0); VERIFY(levels > 0); VERIFY(layers > 0); return adopt_ref(*new Image(format, width, height, depth, levels, layers)); } void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config) { VERIFY(sampler < num_samplers); m_samplers[sampler].set_config(config); } }