/* * Copyright (c) 2020-2022, Andreas Kling * Copyright (c) 2022, Sam Atkins * * SPDX-License-Identifier: BSD-2-Clause */ #include #include namespace Web::HTML { void CanvasPath::close_path() { m_path.close(); } void CanvasPath::move_to(float x, float y) { m_path.move_to({ x, y }); } void CanvasPath::line_to(float x, float y) { m_path.line_to({ x, y }); } void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y) { m_path.quadratic_bezier_curve_to({ cx, cy }, { x, y }); } void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y) { m_path.cubic_bezier_curve_to(Gfx::FloatPoint(cp1x, cp1y), Gfx::FloatPoint(cp2x, cp2y), Gfx::FloatPoint(x, y)); } WebIDL::ExceptionOr CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise) { if (radius < 0) return WebIDL::IndexSizeError::create(m_self->realm(), DeprecatedString::formatted("The radius provided ({}) is negative.", radius)); return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise); } WebIDL::ExceptionOr CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise) { if (radius_x < 0) return WebIDL::IndexSizeError::create(m_self->realm(), DeprecatedString::formatted("The major-axis radius provided ({}) is negative.", radius_x)); if (radius_y < 0) return WebIDL::IndexSizeError::create(m_self->realm(), DeprecatedString::formatted("The minor-axis radius provided ({}) is negative.", radius_y)); if (constexpr float tau = M_TAU; (!counter_clockwise && (end_angle - start_angle) >= tau) || (counter_clockwise && (start_angle - end_angle) >= tau)) { start_angle = 0; end_angle = tau; } else { start_angle = fmodf(start_angle, tau); end_angle = fmodf(end_angle, tau); } // Then, figure out where the ends of the arc are. // To do so, we can pretend that the center of this ellipse is at (0, 0), // and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`. // The sign of the resulting relative positions is just whether our angle is on one of the left quadrants. auto sin_rotation = sinf(rotation); auto cos_rotation = cosf(rotation); auto resolve_point_with_angle = [&](float angle) { auto tan_relative = tanf(angle); auto tan2 = tan_relative * tan_relative; auto ab = radius_x * radius_y; auto a2 = radius_x * radius_x; auto b2 = radius_y * radius_y; auto sqrt = sqrtf(b2 + a2 * tan2); auto relative_x_position = ab / sqrt; auto relative_y_position = ab * tan_relative / sqrt; // Make sure to set the correct sign float sn = sinf(angle) >= 0 ? 1 : -1; relative_x_position *= sn; relative_y_position *= sn; // Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin. auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation; auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation; return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y }; }; auto start_point = resolve_point_with_angle(start_angle); auto end_point = resolve_point_with_angle(end_angle); m_path.move_to(start_point); double delta_theta = end_angle - start_angle; // FIXME: This is still goofy for some values. m_path.elliptical_arc_to(end_point, { radius_x, radius_y }, rotation, delta_theta > M_PI, !counter_clockwise); m_path.close(); return {}; } void CanvasPath::rect(float x, float y, float width, float height) { m_path.move_to({ x, y }); if (width == 0 || height == 0) return; m_path.line_to({ x + width, y }); m_path.line_to({ x + width, y + height }); m_path.line_to({ x, y + height }); m_path.close(); } }