/* * Copyright (c) 2021, Tim Flynn * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace JS::Intl { Vector const& NumberFormat::relevant_extension_keys() { // 15.3.3 Internal slots, https://tc39.es/ecma402/#sec-intl.numberformat-internal-slots // The value of the [[RelevantExtensionKeys]] internal slot is « "nu" ». static Vector relevant_extension_keys { "nu"sv }; return relevant_extension_keys; } // 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects NumberFormat::NumberFormat(Object& prototype) : Object(prototype) { } void NumberFormat::visit_edges(Cell::Visitor& visitor) { Base::visit_edges(visitor); if (m_bound_format) visitor.visit(m_bound_format); } void NumberFormat::set_style(StringView style) { if (style == "decimal"sv) m_style = Style::Decimal; else if (style == "percent"sv) m_style = Style::Percent; else if (style == "currency"sv) m_style = Style::Currency; else if (style == "unit"sv) m_style = Style::Unit; else VERIFY_NOT_REACHED(); } StringView NumberFormat::style_string() const { switch (m_style) { case Style::Decimal: return "decimal"sv; case Style::Percent: return "percent"sv; case Style::Currency: return "currency"sv; case Style::Unit: return "unit"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_currency_display(StringView currency_display) { m_resolved_currency_display.clear(); if (currency_display == "code"sv) m_currency_display = CurrencyDisplay::Code; else if (currency_display == "symbol"sv) m_currency_display = CurrencyDisplay::Symbol; else if (currency_display == "narrowSymbol"sv) m_currency_display = CurrencyDisplay::NarrowSymbol; else if (currency_display == "name"sv) m_currency_display = CurrencyDisplay::Name; else VERIFY_NOT_REACHED(); } StringView NumberFormat::resolve_currency_display() { if (m_resolved_currency_display.has_value()) return *m_resolved_currency_display; switch (currency_display()) { case NumberFormat::CurrencyDisplay::Code: m_resolved_currency_display = currency(); break; case NumberFormat::CurrencyDisplay::Symbol: m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Short); break; case NumberFormat::CurrencyDisplay::NarrowSymbol: m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Narrow); break; case NumberFormat::CurrencyDisplay::Name: m_resolved_currency_display = Unicode::get_locale_currency_mapping(data_locale(), currency(), Unicode::Style::Numeric); break; default: VERIFY_NOT_REACHED(); } if (!m_resolved_currency_display.has_value()) m_resolved_currency_display = currency(); return *m_resolved_currency_display; } StringView NumberFormat::currency_display_string() const { VERIFY(m_currency_display.has_value()); switch (*m_currency_display) { case CurrencyDisplay::Code: return "code"sv; case CurrencyDisplay::Symbol: return "symbol"sv; case CurrencyDisplay::NarrowSymbol: return "narrowSymbol"sv; case CurrencyDisplay::Name: return "name"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_currency_sign(StringView currency_sign) { if (currency_sign == "standard"sv) m_currency_sign = CurrencySign::Standard; else if (currency_sign == "accounting"sv) m_currency_sign = CurrencySign::Accounting; else VERIFY_NOT_REACHED(); } StringView NumberFormat::currency_sign_string() const { VERIFY(m_currency_sign.has_value()); switch (*m_currency_sign) { case CurrencySign::Standard: return "standard"sv; case CurrencySign::Accounting: return "accounting"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_unit_display(StringView unit_display) { if (unit_display == "short"sv) m_unit_display = UnitDisplay::Short; else if (unit_display == "narrow"sv) m_unit_display = UnitDisplay::Narrow; else if (unit_display == "long"sv) m_unit_display = UnitDisplay::Long; else VERIFY_NOT_REACHED(); } StringView NumberFormat::unit_display_string() const { VERIFY(m_unit_display.has_value()); switch (*m_unit_display) { case UnitDisplay::Short: return "short"sv; case UnitDisplay::Narrow: return "narrow"sv; case UnitDisplay::Long: return "long"sv; default: VERIFY_NOT_REACHED(); } } StringView NumberFormat::rounding_type_string() const { switch (m_rounding_type) { case RoundingType::SignificantDigits: return "significantDigits"sv; case RoundingType::FractionDigits: return "fractionDigits"sv; case RoundingType::CompactRounding: return "compactRounding"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_notation(StringView notation) { if (notation == "standard"sv) m_notation = Notation::Standard; else if (notation == "scientific"sv) m_notation = Notation::Scientific; else if (notation == "engineering"sv) m_notation = Notation::Engineering; else if (notation == "compact"sv) m_notation = Notation::Compact; else VERIFY_NOT_REACHED(); } StringView NumberFormat::notation_string() const { switch (m_notation) { case Notation::Standard: return "standard"sv; case Notation::Scientific: return "scientific"sv; case Notation::Engineering: return "engineering"sv; case Notation::Compact: return "compact"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_compact_display(StringView compact_display) { if (compact_display == "short"sv) m_compact_display = CompactDisplay::Short; else if (compact_display == "long"sv) m_compact_display = CompactDisplay::Long; else VERIFY_NOT_REACHED(); } StringView NumberFormat::compact_display_string() const { VERIFY(m_compact_display.has_value()); switch (*m_compact_display) { case CompactDisplay::Short: return "short"sv; case CompactDisplay::Long: return "long"sv; default: VERIFY_NOT_REACHED(); } } void NumberFormat::set_sign_display(StringView sign_display) { if (sign_display == "auto"sv) m_sign_display = SignDisplay::Auto; else if (sign_display == "never"sv) m_sign_display = SignDisplay::Never; else if (sign_display == "always"sv) m_sign_display = SignDisplay::Always; else if (sign_display == "exceptZero"sv) m_sign_display = SignDisplay::ExceptZero; else VERIFY_NOT_REACHED(); } StringView NumberFormat::sign_display_string() const { switch (m_sign_display) { case SignDisplay::Auto: return "auto"sv; case SignDisplay::Never: return "never"sv; case SignDisplay::Always: return "always"sv; case SignDisplay::ExceptZero: return "exceptZero"sv; default: VERIFY_NOT_REACHED(); } } static ALWAYS_INLINE int log10floor(double value) { return static_cast(floor(log10(value))); } // 15.1.1 SetNumberFormatDigitOptions ( intlObj, options, mnfdDefault, mxfdDefault, notation ), https://tc39.es/ecma402/#sec-setnfdigitoptions ThrowCompletionOr set_number_format_digit_options(GlobalObject& global_object, NumberFormat& intl_object, Object const& options, int default_min_fraction_digits, int default_max_fraction_digits, NumberFormat::Notation notation) { auto& vm = global_object.vm(); // 1. Assert: Type(intlObj) is Object. // 2. Assert: Type(options) is Object. // 3. Assert: Type(mnfdDefault) is Number. // 4. Assert: Type(mxfdDefault) is Number. // 5. Let mnid be ? GetNumberOption(options, "minimumIntegerDigits,", 1, 21, 1). auto min_integer_digits = TRY(get_number_option(global_object, options, vm.names.minimumIntegerDigits, 1, 21, 1)); // 6. Let mnfd be ? Get(options, "minimumFractionDigits"). auto min_fraction_digits = TRY(options.get(vm.names.minimumFractionDigits)); // 7. Let mxfd be ? Get(options, "maximumFractionDigits"). auto max_fraction_digits = TRY(options.get(vm.names.maximumFractionDigits)); // 8. Let mnsd be ? Get(options, "minimumSignificantDigits"). auto min_significant_digits = TRY(options.get(vm.names.minimumSignificantDigits)); // 9. Let mxsd be ? Get(options, "maximumSignificantDigits"). auto max_significant_digits = TRY(options.get(vm.names.maximumSignificantDigits)); // 10. Set intlObj.[[MinimumIntegerDigits]] to mnid. intl_object.set_min_integer_digits(*min_integer_digits); // 11. If mnsd is not undefined or mxsd is not undefined, then if (!min_significant_digits.is_undefined() || !max_significant_digits.is_undefined()) { // a. Set intlObj.[[RoundingType]] to significantDigits. intl_object.set_rounding_type(NumberFormat::RoundingType::SignificantDigits); // b. Let mnsd be ? DefaultNumberOption(mnsd, 1, 21, 1). auto min_digits = TRY(default_number_option(global_object, min_significant_digits, 1, 21, 1)); // c. Let mxsd be ? DefaultNumberOption(mxsd, mnsd, 21, 21). auto max_digits = TRY(default_number_option(global_object, max_significant_digits, *min_digits, 21, 21)); // d. Set intlObj.[[MinimumSignificantDigits]] to mnsd. intl_object.set_min_significant_digits(*min_digits); // e. Set intlObj.[[MaximumSignificantDigits]] to mxsd. intl_object.set_max_significant_digits(*max_digits); } // 12. Else if mnfd is not undefined or mxfd is not undefined, then else if (!min_fraction_digits.is_undefined() || !max_fraction_digits.is_undefined()) { // a. Set intlObj.[[RoundingType]] to fractionDigits. intl_object.set_rounding_type(NumberFormat::RoundingType::FractionDigits); // b. Let mnfd be ? DefaultNumberOption(mnfd, 0, 20, undefined). auto min_digits = TRY(default_number_option(global_object, min_fraction_digits, 0, 20, {})); // c. Let mxfd be ? DefaultNumberOption(mxfd, 0, 20, undefined). auto max_digits = TRY(default_number_option(global_object, max_fraction_digits, 0, 20, {})); // d. If mnfd is undefined, set mnfd to min(mnfdDefault, mxfd). if (!min_digits.has_value()) min_digits = min(default_min_fraction_digits, *max_digits); // e. Else if mxfd is undefined, set mxfd to max(mxfdDefault, mnfd). else if (!max_digits.has_value()) max_digits = max(default_max_fraction_digits, *min_digits); // f. Else if mnfd is greater than mxfd, throw a RangeError exception. else if (*min_digits > *max_digits) return vm.throw_completion(global_object, ErrorType::IntlMinimumExceedsMaximum, *min_digits, *max_digits); // g. Set intlObj.[[MinimumFractionDigits]] to mnfd. intl_object.set_min_fraction_digits(*min_digits); // h. Set intlObj.[[MaximumFractionDigits]] to mxfd. intl_object.set_max_fraction_digits(*max_digits); } // 13. Else if notation is "compact", then else if (notation == NumberFormat::Notation::Compact) { // a. Set intlObj.[[RoundingType]] to compactRounding. intl_object.set_rounding_type(NumberFormat::RoundingType::CompactRounding); } // 14. Else, else { // a. Set intlObj.[[RoundingType]] to fractionDigits. intl_object.set_rounding_type(NumberFormat::RoundingType::FractionDigits); // b. Set intlObj.[[MinimumFractionDigits]] to mnfdDefault. intl_object.set_min_fraction_digits(default_min_fraction_digits); // c. Set intlObj.[[MaximumFractionDigits]] to mxfdDefault. intl_object.set_max_fraction_digits(default_max_fraction_digits); } return {}; } // 15.1.2 InitializeNumberFormat ( numberFormat, locales, options ), https://tc39.es/ecma402/#sec-initializenumberformat ThrowCompletionOr initialize_number_format(GlobalObject& global_object, NumberFormat& number_format, Value locales_value, Value options_value) { auto& vm = global_object.vm(); // 1. Let requestedLocales be ? CanonicalizeLocaleList(locales). auto requested_locales = TRY(canonicalize_locale_list(global_object, locales_value)); // 2. Set options to ? CoerceOptionsToObject(options). auto* options = TRY(coerce_options_to_object(global_object, options_value)); // 3. Let opt be a new Record. LocaleOptions opt {}; // 4. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit"). auto matcher = TRY(get_option(global_object, *options, vm.names.localeMatcher, Value::Type::String, { "lookup"sv, "best fit"sv }, "best fit"sv)); // 5. Set opt.[[localeMatcher]] to matcher. opt.locale_matcher = matcher; // 6. Let numberingSystem be ? GetOption(options, "numberingSystem", "string", undefined, undefined). auto numbering_system = TRY(get_option(global_object, *options, vm.names.numberingSystem, Value::Type::String, {}, Empty {})); // 7. If numberingSystem is not undefined, then if (!numbering_system.is_undefined()) { // a. If numberingSystem does not match the Unicode Locale Identifier type nonterminal, throw a RangeError exception. if (!Unicode::is_type_identifier(numbering_system.as_string().string())) return vm.throw_completion(global_object, ErrorType::OptionIsNotValidValue, numbering_system, "numberingSystem"sv); // 8. Set opt.[[nu]] to numberingSystem. opt.nu = numbering_system.as_string().string(); } // 9. Let localeData be %NumberFormat%.[[LocaleData]]. // 10. Let r be ResolveLocale(%NumberFormat%.[[AvailableLocales]], requestedLocales, opt, %NumberFormat%.[[RelevantExtensionKeys]], localeData). auto result = resolve_locale(requested_locales, opt, NumberFormat::relevant_extension_keys()); // 11. Set numberFormat.[[Locale]] to r.[[locale]]. number_format.set_locale(move(result.locale)); // 12. Set numberFormat.[[DataLocale]] to r.[[dataLocale]]. number_format.set_data_locale(move(result.data_locale)); // 13. Set numberFormat.[[NumberingSystem]] to r.[[nu]]. number_format.set_numbering_system(result.nu.release_value()); // 14. Perform ? SetNumberFormatUnitOptions(numberFormat, options). TRY(set_number_format_unit_options(global_object, number_format, *options)); // 15. Let style be numberFormat.[[Style]]. auto style = number_format.style(); int default_min_fraction_digits = 0; int default_max_fraction_digits = 0; // 16. If style is "currency", then if (style == NumberFormat::Style::Currency) { // a. Let currency be numberFormat.[[Currency]]. auto const& currency = number_format.currency(); // b. Let cDigits be CurrencyDigits(currency). int digits = currency_digits(currency); // c. Let mnfdDefault be cDigits. default_min_fraction_digits = digits; // d. Let mxfdDefault be cDigits. default_max_fraction_digits = digits; } // 17. Else, else { // a. Let mnfdDefault be 0. default_min_fraction_digits = 0; // b. If style is "percent", then // i. Let mxfdDefault be 0. // c. Else, // i. Let mxfdDefault be 3. default_max_fraction_digits = style == NumberFormat::Style::Percent ? 0 : 3; } // 18. Let notation be ? GetOption(options, "notation", "string", « "standard", "scientific", "engineering", "compact" », "standard"). auto notation = TRY(get_option(global_object, *options, vm.names.notation, Value::Type::String, { "standard"sv, "scientific"sv, "engineering"sv, "compact"sv }, "standard"sv)); // 19. Set numberFormat.[[Notation]] to notation. number_format.set_notation(notation.as_string().string()); // 20. Perform ? SetNumberFormatDigitOptions(numberFormat, options, mnfdDefault, mxfdDefault, notation). TRY(set_number_format_digit_options(global_object, number_format, *options, default_min_fraction_digits, default_max_fraction_digits, number_format.notation())); // 21. Let compactDisplay be ? GetOption(options, "compactDisplay", "string", « "short", "long" », "short"). auto compact_display = TRY(get_option(global_object, *options, vm.names.compactDisplay, Value::Type::String, { "short"sv, "long"sv }, "short"sv)); // 22. If notation is "compact", then if (number_format.notation() == NumberFormat::Notation::Compact) { // a. Set numberFormat.[[CompactDisplay]] to compactDisplay. number_format.set_compact_display(compact_display.as_string().string()); } // 23. Let useGrouping be ? GetOption(options, "useGrouping", "boolean", undefined, true). auto use_grouping = TRY(get_option(global_object, *options, vm.names.useGrouping, Value::Type::Boolean, {}, true)); // 24. Set numberFormat.[[UseGrouping]] to useGrouping. number_format.set_use_grouping(use_grouping.as_bool()); // 25. Let signDisplay be ? GetOption(options, "signDisplay", "string", « "auto", "never", "always", "exceptZero" », "auto"). auto sign_display = TRY(get_option(global_object, *options, vm.names.signDisplay, Value::Type::String, { "auto"sv, "never"sv, "always"sv, "exceptZero"sv }, "auto"sv)); // 26. Set numberFormat.[[SignDisplay]] to signDisplay. number_format.set_sign_display(sign_display.as_string().string()); // 27. Return numberFormat. return &number_format; } // 15.1.3 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits int currency_digits(StringView currency) { // 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor // unit value corresponding to the currency from the list; otherwise, return 2. if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value()) return currency_code->minor_unit.value_or(2); return 2; } // 15.1.5 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring FormatResult format_numeric_to_string(NumberFormat& number_format, double number) { // 1. If x < 0 or x is -0𝔽, let isNegative be true; else let isNegative be false. bool is_negative = (number < 0.0) || Value(number).is_negative_zero(); // 2. If isNegative, then if (is_negative) { // a. Let x be -x. number *= -1; } RawFormatResult result {}; switch (number_format.rounding_type()) { // 3. If intlObject.[[RoundingType]] is significantDigits, then case NumberFormat::RoundingType::SignificantDigits: // a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]]). result = to_raw_precision(number, number_format.min_significant_digits(), number_format.max_significant_digits()); break; // 4. Else if intlObject.[[RoundingType]] is fractionDigits, then case NumberFormat::RoundingType::FractionDigits: // a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]]). result = to_raw_fixed(number, number_format.min_fraction_digits(), number_format.max_fraction_digits()); break; // 5. Else, case NumberFormat::RoundingType::CompactRounding: // a. Assert: intlObject.[[RoundingType]] is compactRounding. // b. Let result be ToRawPrecision(x, 1, 2). result = to_raw_precision(number, 1, 2); // c. If result.[[IntegerDigitsCount]] > 1, then if (result.digits > 1) { // i. Let result be ToRawFixed(x, 0, 0). result = to_raw_fixed(number, 0, 0); } break; default: VERIFY_NOT_REACHED(); } // 6. Let x be result.[[RoundedNumber]]. number = result.rounded_number; // 7. Let string be result.[[FormattedString]]. auto string = move(result.formatted_string); // 8. Let int be result.[[IntegerDigitsCount]]. int digits = result.digits; // 9. Let minInteger be intlObject.[[MinimumIntegerDigits]]. int min_integer = number_format.min_integer_digits(); // 10. If int < minInteger, then if (digits < min_integer) { // a. Let forwardZeros be the String consisting of minInteger–int occurrences of the character "0". auto forward_zeros = String::repeated('0', min_integer - digits); // b. Set string to the string-concatenation of forwardZeros and string. string = String::formatted("{}{}", forward_zeros, string); } // 11. If isNegative, then if (is_negative) { // a. Let x be -x. number *= -1; } // 12. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }. return { move(string), number }; } // 15.1.6 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern Vector partition_number_pattern(NumberFormat& number_format, double number) { // 1. Let exponent be 0. int exponent = 0; String formatted_string; // 2. If x is NaN, then if (Value(number).is_nan()) { // a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value. formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "nan"sv).value_or("NaN"sv); } // 3. Else if x is a non-finite Number, then else if (!Value(number).is_finite_number()) { // a. Let n be an ILD String value indicating infinity. formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "infinity"sv).value_or("infinity"sv); } // 4. Else, else { // a. If numberFormat.[[Style]] is "percent", let x be 100 × x. if (number_format.style() == NumberFormat::Style::Percent) number = number * 100; // b. Let exponent be ComputeExponent(numberFormat, x). exponent = compute_exponent(number_format, number); // c. Let x be x × 10^(-exponent). number *= pow(10, -exponent); // d. Let formatNumberResult be FormatNumericToString(numberFormat, x). auto format_number_result = format_numeric_to_string(number_format, number); // e. Let n be formatNumberResult.[[FormattedString]]. formatted_string = move(format_number_result.formatted_string); // f. Let x be formatNumberResult.[[RoundedNumber]]. number = format_number_result.rounded_number; } // 5. Let pattern be GetNumberFormatPattern(numberFormat, x). auto pattern = get_number_format_pattern(number_format, number); if (!pattern.has_value()) return {}; // 6. Let result be a new empty List. Vector result; // 7. Let patternParts be PartitionPattern(pattern). auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); }); // 8. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do for (auto& pattern_part : pattern_parts) { // a. Let p be patternPart.[[Type]]. auto part = pattern_part.type; // b. If p is "literal", then if (part == "literal"sv) { // i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result. result.append({ "literal"sv, move(pattern_part.value) }); } // c. Else if p is equal to "number", then else if (part == "number"sv) { // i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent). auto notation_sub_parts = partition_notation_sub_pattern(number_format, number, formatted_string, exponent); // ii. Append all elements of notationSubParts to result. result.extend(move(notation_sub_parts)); } // d. Else if p is equal to "plusSign", then else if (part == "plusSign"sv) { // i. Let plusSignSymbol be the ILND String representing the plus sign. auto plus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "plusSign"sv).value_or("+"sv); // ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result. result.append({ "plusSign"sv, plus_sign_symbol }); } // e. Else if p is equal to "minusSign", then else if (part == "minusSign"sv) { // i. Let minusSignSymbol be the ILND String representing the minus sign. auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "minusSign"sv).value_or("-"sv); // ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result. result.append({ "minusSign"sv, minus_sign_symbol }); } // f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) { // i. Let percentSignSymbol be the ILND String representing the percent sign. auto percent_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "percentSign"sv).value_or("%"sv); // ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result. result.append({ "percentSign"sv, percent_sign_symbol }); } // g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then else if ((part == "unitPrefix"sv) && (number_format.style() == NumberFormat::Style::Unit)) { // i. Let unit be numberFormat.[[Unit]]. // ii. Let unitDisplay be numberFormat.[[UnitDisplay]]. // iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms. // iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result. // FIXME: LibUnicode will need to parse the cldr-units package. } // h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then else if ((part == "unitSuffix"sv) && (number_format.style() == NumberFormat::Style::Unit)) { // i. Let unit be numberFormat.[[Unit]]. // ii. Let unitDisplay be numberFormat.[[UnitDisplay]]. // iii. Let mu be an ILD String value representing unit after x in unitDisplay form, which may depend on x in languages having different plural forms. // iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result. // FIXME: LibUnicode will need to parse the cldr-units package. } // i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then // j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then // k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then // // Note: Our implementation manipulates the format string to inject/remove spacing around the // currency code during GetNumberFormatPattern so that we do not have to do currency // display / plurality lookups more than once. else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) { result.append({ "currency"sv, number_format.resolve_currency_display() }); } // l. Else, else { // i. Let unknown be an ILND String based on x and p. // ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result. // LibUnicode doesn't generate any "unknown" patterns. VERIFY_NOT_REACHED(); } } // 9. Return result. return result; } static String replace_digits_for_number_format(NumberFormat& number_format, String formatted_string) { // https://tc39.es/ecma402/#table-numbering-system-digits static HashMap> s_numbering_system_digits = { { "adlm"sv, { 0x1e950, 0x1e951, 0x1e952, 0x1e953, 0x1e954, 0x1e955, 0x1e956, 0x1e957, 0x1e958, 0x1e959 } }, { "ahom"sv, { 0x11730, 0x11731, 0x11732, 0x11733, 0x11734, 0x11735, 0x11736, 0x11737, 0x11738, 0x11739 } }, { "arab"sv, { 0x660, 0x661, 0x662, 0x663, 0x664, 0x665, 0x666, 0x667, 0x668, 0x669 } }, { "arabext"sv, { 0x6f0, 0x6f1, 0x6f2, 0x6f3, 0x6f4, 0x6f5, 0x6f6, 0x6f7, 0x6f8, 0x6f9 } }, { "bali"sv, { 0x1b50, 0x1b51, 0x1b52, 0x1b53, 0x1b54, 0x1b55, 0x1b56, 0x1b57, 0x1b58, 0x1b59 } }, { "beng"sv, { 0x9e6, 0x9e7, 0x9e8, 0x9e9, 0x9ea, 0x9eb, 0x9ec, 0x9ed, 0x9ee, 0x9ef } }, { "bhks"sv, { 0x11c50, 0x11c51, 0x11c52, 0x11c53, 0x11c54, 0x11c55, 0x11c56, 0x11c57, 0x11c58, 0x11c59 } }, { "brah"sv, { 0x11066, 0x11067, 0x11068, 0x11069, 0x1106a, 0x1106b, 0x1106c, 0x1106d, 0x1106e, 0x1106f } }, { "cakm"sv, { 0x11136, 0x11137, 0x11138, 0x11139, 0x1113a, 0x1113b, 0x1113c, 0x1113d, 0x1113e, 0x1113f } }, { "cham"sv, { 0xaa50, 0xaa51, 0xaa52, 0xaa53, 0xaa54, 0xaa55, 0xaa56, 0xaa57, 0xaa58, 0xaa59 } }, { "deva"sv, { 0x966, 0x967, 0x968, 0x969, 0x96a, 0x96b, 0x96c, 0x96d, 0x96e, 0x96f } }, { "diak"sv, { 0x11950, 0x11951, 0x11952, 0x11953, 0x11954, 0x11955, 0x11956, 0x11957, 0x11958, 0x11959 } }, { "fullwide"sv, { 0xff10, 0xff11, 0xff12, 0xff13, 0xff14, 0xff15, 0xff16, 0xff17, 0xff18, 0xff19 } }, { "gong"sv, { 0x11da0, 0x11da1, 0x11da2, 0x11da3, 0x11da4, 0x11da5, 0x11da6, 0x11da7, 0x11da8, 0x11da9 } }, { "gonm"sv, { 0x11d50, 0x11d51, 0x11d52, 0x11d53, 0x11d54, 0x11d55, 0x11d56, 0x11d57, 0x11d58, 0x11d59 } }, { "gujr"sv, { 0xae6, 0xae7, 0xae8, 0xae9, 0xaea, 0xaeb, 0xaec, 0xaed, 0xaee, 0xaef } }, { "guru"sv, { 0xa66, 0xa67, 0xa68, 0xa69, 0xa6a, 0xa6b, 0xa6c, 0xa6d, 0xa6e, 0xa6f } }, { "hanidec"sv, { 0x3007, 0x4e00, 0x4e8c, 0x4e09, 0x56db, 0x4e94, 0x516d, 0x4e03, 0x516b, 0x4e5d } }, { "hmng"sv, { 0x16b50, 0x16b51, 0x16b52, 0x16b53, 0x16b54, 0x16b55, 0x16b56, 0x16b57, 0x16b58, 0x16b59 } }, { "hmnp"sv, { 0x1e140, 0x1e141, 0x1e142, 0x1e143, 0x1e144, 0x1e145, 0x1e146, 0x1e147, 0x1e148, 0x1e149 } }, { "java"sv, { 0xa9d0, 0xa9d1, 0xa9d2, 0xa9d3, 0xa9d4, 0xa9d5, 0xa9d6, 0xa9d7, 0xa9d8, 0xa9d9 } }, { "kali"sv, { 0xa900, 0xa901, 0xa902, 0xa903, 0xa904, 0xa905, 0xa906, 0xa907, 0xa908, 0xa909 } }, { "khmr"sv, { 0x17e0, 0x17e1, 0x17e2, 0x17e3, 0x17e4, 0x17e5, 0x17e6, 0x17e7, 0x17e8, 0x17e9 } }, { "knda"sv, { 0xce6, 0xce7, 0xce8, 0xce9, 0xcea, 0xceb, 0xcec, 0xced, 0xcee, 0xcef } }, { "lana"sv, { 0x1a80, 0x1a81, 0x1a82, 0x1a83, 0x1a84, 0x1a85, 0x1a86, 0x1a87, 0x1a88, 0x1a89 } }, { "lanatham"sv, { 0x1a90, 0x1a91, 0x1a92, 0x1a93, 0x1a94, 0x1a95, 0x1a96, 0x1a97, 0x1a98, 0x1a99 } }, { "laoo"sv, { 0xed0, 0xed1, 0xed2, 0xed3, 0xed4, 0xed5, 0xed6, 0xed7, 0xed8, 0xed9 } }, { "latn"sv, { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 } }, { "lepc"sv, { 0x1c40, 0x1c41, 0x1c42, 0x1c43, 0x1c44, 0x1c45, 0x1c46, 0x1c47, 0x1c48, 0x1c49 } }, { "limb"sv, { 0x1946, 0x1947, 0x1948, 0x1949, 0x194a, 0x194b, 0x194c, 0x194d, 0x194e, 0x194f } }, { "mathbold"sv, { 0x1d7ce, 0x1d7cf, 0x1d7d0, 0x1d7d1, 0x1d7d2, 0x1d7d3, 0x1d7d4, 0x1d7d5, 0x1d7d6, 0x1d7d7 } }, { "mathdbl"sv, { 0x1d7d8, 0x1d7d9, 0x1d7da, 0x1d7db, 0x1d7dc, 0x1d7dd, 0x1d7de, 0x1d7df, 0x1d7e0, 0x1d7e1 } }, { "mathmono"sv, { 0x1d7f6, 0x1d7f7, 0x1d7f8, 0x1d7f9, 0x1d7fa, 0x1d7fb, 0x1d7fc, 0x1d7fd, 0x1d7fe, 0x1d7ff } }, { "mathsanb"sv, { 0x1d7ec, 0x1d7ed, 0x1d7ee, 0x1d7ef, 0x1d7f0, 0x1d7f1, 0x1d7f2, 0x1d7f3, 0x1d7f4, 0x1d7f5 } }, { "mathsans"sv, { 0x1d7e2, 0x1d7e3, 0x1d7e4, 0x1d7e5, 0x1d7e6, 0x1d7e7, 0x1d7e8, 0x1d7e9, 0x1d7ea, 0x1d7eb } }, { "mlym"sv, { 0xd66, 0xd67, 0xd68, 0xd69, 0xd6a, 0xd6b, 0xd6c, 0xd6d, 0xd6e, 0xd6f } }, { "modi"sv, { 0x11650, 0x11651, 0x11652, 0x11653, 0x11654, 0x11655, 0x11656, 0x11657, 0x11658, 0x11659 } }, { "mong"sv, { 0x1810, 0x1811, 0x1812, 0x1813, 0x1814, 0x1815, 0x1816, 0x1817, 0x1818, 0x1819 } }, { "mroo"sv, { 0x16a60, 0x16a61, 0x16a62, 0x16a63, 0x16a64, 0x16a65, 0x16a66, 0x16a67, 0x16a68, 0x16a69 } }, { "mtei"sv, { 0xabf0, 0xabf1, 0xabf2, 0xabf3, 0xabf4, 0xabf5, 0xabf6, 0xabf7, 0xabf8, 0xabf9 } }, { "mymr"sv, { 0x1040, 0x1041, 0x1042, 0x1043, 0x1044, 0x1045, 0x1046, 0x1047, 0x1048, 0x1049 } }, { "mymrshan"sv, { 0x1090, 0x1091, 0x1092, 0x1093, 0x1094, 0x1095, 0x1096, 0x1097, 0x1098, 0x1099 } }, { "mymrtlng"sv, { 0xa9f0, 0xa9f1, 0xa9f2, 0xa9f3, 0xa9f4, 0xa9f5, 0xa9f6, 0xa9f7, 0xa9f8, 0xa9f9 } }, { "newa"sv, { 0x11450, 0x11451, 0x11452, 0x11453, 0x11454, 0x11455, 0x11456, 0x11457, 0x11458, 0x11459 } }, { "nkoo"sv, { 0x7c0, 0x7c1, 0x7c2, 0x7c3, 0x7c4, 0x7c5, 0x7c6, 0x7c7, 0x7c8, 0x7c9 } }, { "olck"sv, { 0x1c50, 0x1c51, 0x1c52, 0x1c53, 0x1c54, 0x1c55, 0x1c56, 0x1c57, 0x1c58, 0x1c59 } }, { "orya"sv, { 0xb66, 0xb67, 0xb68, 0xb69, 0xb6a, 0xb6b, 0xb6c, 0xb6d, 0xb6e, 0xb6f } }, { "osma"sv, { 0x104a0, 0x104a1, 0x104a2, 0x104a3, 0x104a4, 0x104a5, 0x104a6, 0x104a7, 0x104a8, 0x104a9 } }, { "rohg"sv, { 0x10d30, 0x10d31, 0x10d32, 0x10d33, 0x10d34, 0x10d35, 0x10d36, 0x10d37, 0x10d38, 0x10d39 } }, { "saur"sv, { 0xa8d0, 0xa8d1, 0xa8d2, 0xa8d3, 0xa8d4, 0xa8d5, 0xa8d6, 0xa8d7, 0xa8d8, 0xa8d9 } }, { "segment"sv, { 0x1fbf0, 0x1fbf1, 0x1fbf2, 0x1fbf3, 0x1fbf4, 0x1fbf5, 0x1fbf6, 0x1fbf7, 0x1fbf8, 0x1fbf9 } }, { "shrd"sv, { 0x111d0, 0x111d1, 0x111d2, 0x111d3, 0x111d4, 0x111d5, 0x111d6, 0x111d7, 0x111d8, 0x111d9 } }, { "sind"sv, { 0x112f0, 0x112f1, 0x112f2, 0x112f3, 0x112f4, 0x112f5, 0x112f6, 0x112f7, 0x112f8, 0x112f9 } }, { "sinh"sv, { 0xde6, 0xde7, 0xde8, 0xde9, 0xdea, 0xdeb, 0xdec, 0xded, 0xdee, 0xdef } }, { "sora"sv, { 0x110f0, 0x110f1, 0x110f2, 0x110f3, 0x110f4, 0x110f5, 0x110f6, 0x110f7, 0x110f8, 0x110f9 } }, { "sund"sv, { 0x1bb0, 0x1bb1, 0x1bb2, 0x1bb3, 0x1bb4, 0x1bb5, 0x1bb6, 0x1bb7, 0x1bb8, 0x1bb9 } }, { "takr"sv, { 0x116c0, 0x116c1, 0x116c2, 0x116c3, 0x116c4, 0x116c5, 0x116c6, 0x116c7, 0x116c8, 0x116c9 } }, { "talu"sv, { 0x19d0, 0x19d1, 0x19d2, 0x19d3, 0x19d4, 0x19d5, 0x19d6, 0x19d7, 0x19d8, 0x19d9 } }, { "tamldec"sv, { 0xbe6, 0xbe7, 0xbe8, 0xbe9, 0xbea, 0xbeb, 0xbec, 0xbed, 0xbee, 0xbef } }, { "telu"sv, { 0xc66, 0xc67, 0xc68, 0xc69, 0xc6a, 0xc6b, 0xc6c, 0xc6d, 0xc6e, 0xc6f } }, { "thai"sv, { 0xe50, 0xe51, 0xe52, 0xe53, 0xe54, 0xe55, 0xe56, 0xe57, 0xe58, 0xe59 } }, { "tibt"sv, { 0xf20, 0xf21, 0xf22, 0xf23, 0xf24, 0xf25, 0xf26, 0xf27, 0xf28, 0xf29 } }, { "tirh"sv, { 0x114d0, 0x114d1, 0x114d2, 0x114d3, 0x114d4, 0x114d5, 0x114d6, 0x114d7, 0x114d8, 0x114d9 } }, { "vaii"sv, { 0xa620, 0xa621, 0xa622, 0xa623, 0xa624, 0xa625, 0xa626, 0xa627, 0xa628, 0xa629 } }, { "wara"sv, { 0x118e0, 0x118e1, 0x118e2, 0x118e3, 0x118e4, 0x118e5, 0x118e6, 0x118e7, 0x118e8, 0x118e9 } }, { "wcho"sv, { 0x1e2f0, 0x1e2f1, 0x1e2f2, 0x1e2f3, 0x1e2f4, 0x1e2f5, 0x1e2f6, 0x1e2f7, 0x1e2f8, 0x1e2f9 } }, }; auto digits = s_numbering_system_digits.get(number_format.numbering_system()); if (!digits.has_value()) digits = s_numbering_system_digits.get("latn"sv); VERIFY(digits.has_value()); StringBuilder builder; for (auto& ch : formatted_string) { if (is_ascii_digit(ch)) { u32 digit = digits->at(parse_ascii_digit(ch)); builder.append_code_point(digit); } else { builder.append(ch); } } return builder.build(); } static Vector separate_integer_into_groups(Unicode::NumberGroupings const& grouping_sizes, StringView integer) { Utf8View utf8_integer { integer }; Vector groups; auto add_group = [&](size_t index, size_t length) { groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string()); }; if (utf8_integer.length() > grouping_sizes.primary_grouping_size) { size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size; add_group(index, grouping_sizes.primary_grouping_size); while (index > grouping_sizes.secondary_grouping_size) { index -= grouping_sizes.secondary_grouping_size; add_group(index, grouping_sizes.secondary_grouping_size); } if (index > 0) add_group(0, index); } else { groups.append(integer); } return groups; } // 15.1.7 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern Vector partition_notation_sub_pattern(NumberFormat& number_format, double number, String formatted_string, int exponent) { // 1. Let result be a new empty List. Vector result; auto grouping_sizes = Unicode::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system()); if (!grouping_sizes.has_value()) return {}; // 2. If x is NaN, then if (Value(number).is_nan()) { // a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result. result.append({ "nan"sv, move(formatted_string) }); } // 3. Else if x is a non-finite Number, then else if (!Value(number).is_finite_number()) { // a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result. result.append({ "infinity"sv, move(formatted_string) }); } // 4. Else, else { // a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent). auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent); if (!notation_sub_pattern.has_value()) return {}; // b. Let patternParts be PartitionPattern(notationSubPattern). auto pattern_parts = partition_pattern(*notation_sub_pattern); // c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do for (auto& pattern_part : pattern_parts) { // i. Let p be patternPart.[[Type]]. auto part = pattern_part.type; // ii. If p is "literal", then if (part == "literal"sv) { // 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result. result.append({ "literal"sv, move(pattern_part.value) }); } // iii. Else if p is equal to "number", then else if (part == "number"sv) { // 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 10 below, then // a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 10. // b. Replace each digit in n with the value of digits[digit]. // 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system. formatted_string = replace_digits_for_number_format(number_format, move(formatted_string)); // 3. Let decimalSepIndex be ! StringIndexOf(n, ".", 0). auto decimal_sep_index = formatted_string.find('.'); StringView integer; Optional fraction; // 4. If decimalSepIndex > 0, then if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) { // a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive. integer = formatted_string.substring_view(0, *decimal_sep_index); // b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n. fraction = formatted_string.substring_view(*decimal_sep_index + 1); } // 5. Else, else { // a. Let integer be n. integer = formatted_string; // b. Let fraction be undefined. } bool use_grouping = number_format.use_grouping(); // FIXME: The spec doesn't indicate this, but grouping should be disabled for numbers less than 10,000 when the notation is compact. // This is addressed in Intl.NumberFormat V3 with the "min2" [[UseGrouping]] option. However, test262 explicitly expects this // behavior in the "de-DE" locale tests, because this is how ICU (and therefore V8, SpiderMoney, etc.) has always behaved. // // So, in locales "de-*", we must have: // Intl.NumberFormat("de", {notation: "compact"}).format(1234) === "1234" // Intl.NumberFormat("de", {notation: "compact"}).format(12345) === "12.345" // Intl.NumberFormat("de").format(1234) === "1.234" // Intl.NumberFormat("de").format(12345) === "12.345" // // See: https://github.com/tc39/proposal-intl-numberformat-v3/issues/3 if (number_format.has_compact_format()) use_grouping = number >= 10'000; // 6. If the numberFormat.[[UseGrouping]] is true, then if (use_grouping) { // a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator. auto group_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "group"sv).value_or(","sv); // b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer. auto groups = separate_integer_into_groups(*grouping_sizes, integer); // c. Assert: The number of elements in groups List is greater than 0. VERIFY(!groups.is_empty()); // d. Repeat, while groups List is not empty, while (!groups.is_empty()) { // i. Remove the first element from groups and let integerGroup be the value of that element. auto integer_group = groups.take_first(); // ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result. result.append({ "integer"sv, integer_group }); // iii. If groups List is not empty, then if (!groups.is_empty()) { // i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result. result.append({ "group"sv, group_sep_symbol }); } } } // 7. Else, else { // a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result. result.append({ "integer"sv, integer }); } // 8. If fraction is not undefined, then if (fraction.has_value()) { // a. Let decimalSepSymbol be the ILND String representing the decimal separator. auto decimal_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "decimal"sv).value_or("."sv); // b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result. result.append({ "decimal"sv, decimal_sep_symbol }); // c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result. result.append({ "fraction"sv, fraction.release_value() }); } } // iv. Else if p is equal to "compactSymbol", then // v. Else if p is equal to "compactName", then else if (part == "compactIdentifier"sv) { // Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier". // 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder. auto compact_identifier = number_format.compact_format().identifier; // 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result. result.append({ "compact"sv, compact_identifier }); } // vi. Else if p is equal to "scientificSeparator", then else if (part == "scientificSeparator"sv) { // 1. Let scientificSeparator be the ILND String representing the exponent separator. auto scientific_separator = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "exponential"sv).value_or("E"sv); // 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result. result.append({ "exponentSeparator"sv, scientific_separator }); } // vii. Else if p is equal to "scientificExponent", then else if (part == "scientificExponent"sv) { // 1. If exponent < 0, then if (exponent < 0) { // a. Let minusSignSymbol be the ILND String representing the minus sign. auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), "minusSign"sv).value_or("-"sv); // b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result. result.append({ "exponentMinusSign"sv, minus_sign_symbol }); // c. Let exponent be -exponent. exponent *= -1; } // 2. Let exponentResult be ToRawFixed(exponent, 1, 0, 0). // Note: See the implementation of ToRawFixed for why we do not pass the 1. auto exponent_result = to_raw_fixed(exponent, 0, 0); // FIXME: The spec does not say to do this, but all of major engines perform this replacement. // Without this, formatting with non-Latin numbering systems will produce non-localized results. exponent_result.formatted_string = replace_digits_for_number_format(number_format, move(exponent_result.formatted_string)); // 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result. result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) }); } // viii. Else, else { // 1. Let unknown be an ILND String based on x and p. // 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result. // LibUnicode doesn't generate any "unknown" patterns. VERIFY_NOT_REACHED(); } } } // 5. Return result. return result; } // 15.1.8 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber String format_numeric(NumberFormat& number_format, double number) { // 1. Let parts be ? PartitionNumberPattern(numberFormat, x). // Note: Our implementation of PartitionNumberPattern does not throw. auto parts = partition_number_pattern(number_format, number); // 2. Let result be the empty String. StringBuilder result; // 3. For each Record { [[Type]], [[Value]] } part in parts, do for (auto& part : parts) { // a. Set result to the string-concatenation of result and part.[[Value]]. result.append(move(part.value)); } // 4. Return result. return result.build(); } // 15.1.9 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts Array* format_numeric_to_parts(GlobalObject& global_object, NumberFormat& number_format, double number) { auto& vm = global_object.vm(); // 1. Let parts be ? PartitionNumberPattern(numberFormat, x). // Note: Our implementation of PartitionNumberPattern does not throw. auto parts = partition_number_pattern(number_format, number); // 2. Let result be ArrayCreate(0). auto* result = MUST(Array::create(global_object, 0)); // 3. Let n be 0. size_t n = 0; // 4. For each Record { [[Type]], [[Value]] } part in parts, do for (auto& part : parts) { // a. Let O be OrdinaryObjectCreate(%Object.prototype%). auto* object = Object::create(global_object, global_object.object_prototype()); // b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]). MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type))); // c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]). MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value)))); // d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O). MUST(result->create_data_property_or_throw(n, object)); // e. Increment n by 1. ++n; } // 5. Return result. return result; } static String cut_trailing_zeroes(StringView string, int cut) { // These steps are exactly the same between ToRawPrecision and ToRawFixed. // Repeat, while cut > 0 and the last character of m is "0", while ((cut > 0) && string.ends_with('0')) { // Remove the last character from m. string = string.substring_view(0, string.length() - 1); // Decrease cut by 1. --cut; } // If the last character of m is ".", then if (string.ends_with('.')) { // Remove the last character from m. string = string.substring_view(0, string.length() - 1); } return string.to_string(); } // 15.1.10 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision RawFormatResult to_raw_precision(double number, int min_precision, int max_precision) { RawFormatResult result {}; // 1. Let p be maxPrecision. int precision = max_precision; int exponent = 0; // 2. If x = 0, then if (number == 0.0) { // a. Let m be the String consisting of p occurrences of the character "0". result.formatted_string = String::repeated('0', precision); // b. Let e be 0. exponent = 0; // c. Let xFinal be 0. result.rounded_number = 0; } // 3. Else, else { // FIXME: The result of these steps isn't entirely accurate for large values of 'p' (which // defaults to 21, resulting in numbers on the order of 10^21). Either AK::format or // our Number::toString AO (double_to_string in Value.cpp) will need to be improved // to produce more accurate results. // a. Let e be the base 10 logarithm of x rounded down to the nearest integer. exponent = log10floor(number); double power = pow(10, exponent - precision + 1); // b. Let n be an integer such that 10^(p–1) ≤ n < 10^p and for which the exact mathematical value of n × 10^(e–p+1) – x // is as close to zero as possible. If there is more than one such n, pick the one for which n × 10^(e–p+1) is larger. double n = round(number / power); // c. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes). result.formatted_string = Value(n).to_string_without_side_effects(); // d. Let xFinal be n × 10^(e–p+1). result.rounded_number = n * power; } // 4. If e ≥ p–1, then if (exponent >= (precision - 1)) { // a. Let m be the string-concatenation of m and e–p+1 occurrences of the character "0". result.formatted_string = String::formatted( "{}{}", result.formatted_string, String::repeated('0', exponent - precision + 1)); // b. Let int be e+1. result.digits = exponent + 1; } // 5. Else if e ≥ 0, then else if (exponent >= 0) { // a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p–(e+1) characters of m. result.formatted_string = String::formatted( "{}.{}", result.formatted_string.substring_view(0, exponent + 1), result.formatted_string.substring_view(exponent + 1)); // b. Let int be e+1. result.digits = exponent + 1; } // 6. Else, else { // a. Assert: e < 0. // b. Let m be the string-concatenation of the String value "0.", –(e+1) occurrences of the character "0", and m. result.formatted_string = String::formatted( "0.{}{}", String::repeated('0', -1 * (exponent + 1)), result.formatted_string); // c. Let int be 1. result.digits = 1; } // 7. If m contains the character ".", and maxPrecision > minPrecision, then if (result.formatted_string.contains('.') && (max_precision > min_precision)) { // a. Let cut be maxPrecision – minPrecision. int cut = max_precision - min_precision; result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut); } // 8. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }. return result; } // 15.1.11 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed // NOTE: The spec has a mistake here. The minInteger parameter is unused and is not provided by FormatNumericToString. RawFormatResult to_raw_fixed(double number, int min_fraction, int max_fraction) { RawFormatResult result {}; // 1. Let f be maxFraction. int fraction = max_fraction; double power = pow(10, fraction); // 2. Let n be an integer for which the exact mathematical value of n / 10^f – x is as close to zero as possible. If there are two such n, pick the larger n. double n = round(number * power); // 3. Let xFinal be n / 10^f. result.rounded_number = n / power; // 4. If n = 0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes). result.formatted_string = n == 0.0 ? String("0"sv) : Value(n).to_string_without_side_effects(); // 5. If f ≠ 0, then if (fraction != 0) { // a. Let k be the number of characters in m. auto decimals = result.formatted_string.length(); // b. If k ≤ f, then if (decimals <= static_cast(fraction)) { // i. Let z be the String value consisting of f+1–k occurrences of the character "0". auto zeroes = String::repeated('0', fraction + 1 - decimals); // ii. Let m be the string-concatenation of z and m. result.formatted_string = String::formatted("{}{}", zeroes, result.formatted_string); // iii. Let k be f+1. decimals = fraction + 1; } // c. Let a be the first k–f characters of m, and let b be the remaining f characters of m. auto a = result.formatted_string.substring_view(0, decimals - fraction); auto b = result.formatted_string.substring_view(decimals - fraction, fraction); // d. Let m be the string-concatenation of a, ".", and b. result.formatted_string = String::formatted("{}.{}", a, b); // e. Let int be the number of characters in a. result.digits = a.length(); } // 6. Else, let int be the number of characters in m. else { result.digits = result.formatted_string.length(); } // 7. Let cut be maxFraction – minFraction. int cut = max_fraction - min_fraction; result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut); // 10. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }. return result; } // 15.1.13 SetNumberFormatUnitOptions ( intlObj, options ), https://tc39.es/ecma402/#sec-setnumberformatunitoptions ThrowCompletionOr set_number_format_unit_options(GlobalObject& global_object, NumberFormat& intl_object, Object const& options) { auto& vm = global_object.vm(); // 1. Assert: Type(intlObj) is Object. // 2. Assert: Type(options) is Object. // 3. Let style be ? GetOption(options, "style", "string", « "decimal", "percent", "currency", "unit" », "decimal"). auto style = TRY(get_option(global_object, options, vm.names.style, Value::Type::String, { "decimal"sv, "percent"sv, "currency"sv, "unit"sv }, "decimal"sv)); // 4. Set intlObj.[[Style]] to style. intl_object.set_style(style.as_string().string()); // 5. Let currency be ? GetOption(options, "currency", "string", undefined, undefined). auto currency = TRY(get_option(global_object, options, vm.names.currency, Value::Type::String, {}, Empty {})); // 6. If currency is undefined, then if (currency.is_undefined()) { // a. If style is "currency", throw a TypeError exception. if (intl_object.style() == NumberFormat::Style::Currency) return vm.throw_completion(global_object, ErrorType::IntlOptionUndefined, "currency"sv, "style"sv, style); } // 7. Else, // a. If the result of IsWellFormedCurrencyCode(currency) is false, throw a RangeError exception. else if (!is_well_formed_currency_code(currency.as_string().string())) return vm.throw_completion(global_object, ErrorType::OptionIsNotValidValue, currency, "currency"sv); // 8. Let currencyDisplay be ? GetOption(options, "currencyDisplay", "string", « "code", "symbol", "narrowSymbol", "name" », "symbol"). auto currency_display = TRY(get_option(global_object, options, vm.names.currencyDisplay, Value::Type::String, { "code"sv, "symbol"sv, "narrowSymbol"sv, "name"sv }, "symbol"sv)); // 9. Let currencySign be ? GetOption(options, "currencySign", "string", « "standard", "accounting" », "standard"). auto currency_sign = TRY(get_option(global_object, options, vm.names.currencySign, Value::Type::String, { "standard"sv, "accounting"sv }, "standard"sv)); // 10. Let unit be ? GetOption(options, "unit", "string", undefined, undefined). auto unit = TRY(get_option(global_object, options, vm.names.unit, Value::Type::String, {}, Empty {})); // 11. If unit is undefined, then if (unit.is_undefined()) { // a. If style is "unit", throw a TypeError exception. if (intl_object.style() == NumberFormat::Style::Unit) return vm.throw_completion(global_object, ErrorType::IntlOptionUndefined, "unit"sv, "style"sv, style); } // 12. Else, // a. If the result of IsWellFormedUnitIdentifier(unit) is false, throw a RangeError exception. else if (!is_well_formed_unit_identifier(unit.as_string().string())) return vm.throw_completion(global_object, ErrorType::OptionIsNotValidValue, unit, "unit"sv); // 13. Let unitDisplay be ? GetOption(options, "unitDisplay", "string", « "short", "narrow", "long" », "short"). auto unit_display = TRY(get_option(global_object, options, vm.names.unitDisplay, Value::Type::String, { "short"sv, "narrow"sv, "long"sv }, "short"sv)); // 14. If style is "currency", then if (intl_object.style() == NumberFormat::Style::Currency) { // a. Let currency be the result of converting currency to upper case as specified in 6.1. // b. Set intlObj.[[Currency]] to currency. intl_object.set_currency(currency.as_string().string().to_uppercase()); // c. Set intlObj.[[CurrencyDisplay]] to currencyDisplay. intl_object.set_currency_display(currency_display.as_string().string()); // d. Set intlObj.[[CurrencySign]] to currencySign. intl_object.set_currency_sign(currency_sign.as_string().string()); } // 15. If style is "unit", then if (intl_object.style() == NumberFormat::Style::Unit) { // a. Set intlObj.[[Unit]] to unit. intl_object.set_unit(unit.as_string().string()); // b. Set intlObj.[[UnitDisplay]] to unitDisplay. intl_object.set_unit_display(unit_display.as_string().string()); } return {}; } // 15.1.14 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern Optional> get_number_format_pattern(NumberFormat& number_format, double number) { // 1. Let localeData be %NumberFormat%.[[LocaleData]]. // 2. Let dataLocale be numberFormat.[[DataLocale]]. // 3. Let dataLocaleData be localeData.[[]]. // 4. Let patterns be dataLocaleData.[[patterns]]. // 5. Assert: patterns is a Record (see 15.3.3). Optional patterns; // 6. Let style be numberFormat.[[Style]]. switch (number_format.style()) { // 7. If style is "percent", then case NumberFormat::Style::Percent: // a. Let patterns be patterns.[[percent]]. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Percent); break; // 8. Else if style is "unit", then case NumberFormat::Style::Unit: // a. Let unit be numberFormat.[[Unit]]. // b. Let unitDisplay be numberFormat.[[UnitDisplay]]. // c. Let patterns be patterns.[[unit]]. // d. If patterns doesn't have a field [[]], then // i. Let unit be "fallback". // e. Let patterns be patterns.[[]]. // f. Let patterns be patterns.[[]]. // FIXME: LibUnicode will need to parse the cldr-units package. break; // 9. Else if style is "currency", then case NumberFormat::Style::Currency: // a. Let currency be numberFormat.[[Currency]]. // b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]]. // c. Let currencySign be numberFormat.[[CurrencySign]]. // d. Let patterns be patterns.[[currency]]. // e. If patterns doesn't have a field [[]], then // i. Let currency be "fallback". // f. Let patterns be patterns.[[]]. // g. Let patterns be patterns.[[]]. // h. Let patterns be patterns.[[]]. // Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]]. if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) { auto formats = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyUnit); auto maybe_patterns = Unicode::select_pattern_with_plurality(formats, number); if (maybe_patterns.has_value()) { patterns = maybe_patterns.release_value(); break; } } switch (number_format.currency_sign()) { case NumberFormat::CurrencySign::Standard: patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Currency); break; case NumberFormat::CurrencySign::Accounting: patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Accounting); break; } break; // 10. Else, case NumberFormat::Style::Decimal: // a. Assert: style is "decimal". // b. Let patterns be patterns.[[decimal]]. patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Decimal); break; default: VERIFY_NOT_REACHED(); } if (!patterns.has_value()) return {}; StringView pattern; Value number_value(number); bool is_positive_zero = number_value.is_positive_zero(); bool is_negative_zero = number_value.is_negative_zero(); bool is_nan = number_value.is_nan(); // 11. Let signDisplay be numberFormat.[[SignDisplay]]. switch (number_format.sign_display()) { // 12. If signDisplay is "never", then case NumberFormat::SignDisplay::Never: // a. Let pattern be patterns.[[zeroPattern]]. pattern = patterns->zero_format; break; // 13. Else if signDisplay is "auto", then case NumberFormat::SignDisplay::Auto: // a. If x is 0 or x > 0 or x is NaN, then if (is_positive_zero || (number > 0) || is_nan) { // i. Let pattern be patterns.[[zeroPattern]]. pattern = patterns->zero_format; } // b. Else, else { // i. Let pattern be patterns.[[negativePattern]]. pattern = patterns->negative_format; } break; // 14. Else if signDisplay is "always", then case NumberFormat::SignDisplay::Always: // a. If x is 0 or x > 0 or x is NaN, then if (is_positive_zero || (number > 0) || is_nan) { // i. Let pattern be patterns.[[positivePattern]]. pattern = patterns->positive_format; } // b. Else, else { // i. Let pattern be patterns.[[negativePattern]]. pattern = patterns->negative_format; } break; // 15. Else, case NumberFormat::SignDisplay::ExceptZero: // a. Assert: signDisplay is "exceptZero". // b. If x is 0 or x is -0 or x is NaN, then if (is_positive_zero || is_negative_zero || is_nan) { // i. Let pattern be patterns.[[zeroPattern]]. pattern = patterns->zero_format; } // c. Else if x > 0, then else if (number > 0) { // i. Let pattern be patterns.[[positivePattern]]. pattern = patterns->positive_format; } // d. Else, else { // i. Let pattern be patterns.[[negativePattern]]. pattern = patterns->negative_format; } break; default: VERIFY_NOT_REACHED(); } // Handling of steps 9b/9g: Depending on the currency display and the format pattern found above, // we might need to mutate the format pattern to inject a space between the currency display and // the currency number. if (number_format.style() == NumberFormat::Style::Currency) { auto modified_pattern = Unicode::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern); if (modified_pattern.has_value()) return modified_pattern.release_value(); } // 16. Return pattern. return pattern; } // 15.1.15 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern Optional get_notation_sub_pattern(NumberFormat& number_format, int exponent) { // 1. Let localeData be %NumberFormat%.[[LocaleData]]. // 2. Let dataLocale be numberFormat.[[DataLocale]]. // 3. Let dataLocaleData be localeData.[[]]. // 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]]. // 5. Assert: notationSubPatterns is a Record (see 15.3.3). // 6. Let notation be numberFormat.[[Notation]]. auto notation = number_format.notation(); // 7. If notation is "scientific" or notation is "engineering", then if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) { // a. Return notationSubPatterns.[[scientific]]. auto notation_sub_patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Scientific); if (!notation_sub_patterns.has_value()) return {}; return notation_sub_patterns->zero_format; } // 8. Else if exponent is not 0, then else if (exponent != 0) { // a. Assert: notation is "compact". VERIFY(notation == NumberFormat::Notation::Compact); // b. Let compactDisplay be numberFormat.[[CompactDisplay]]. // c. Let compactPatterns be notationSubPatterns.[[compact]].[[]]. // d. Return compactPatterns.[[]]. if (number_format.has_compact_format()) return number_format.compact_format().zero_format; } // 9. Else, // a. Return "{number}". return "{number}"sv; } // 15.1.16 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent int compute_exponent(NumberFormat& number_format, double number) { // 1. If x = 0, then if (number == 0.0) { // a. Return 0. return 0; } // 2. If x < 0, then if (number < 0) { // a. Let x = -x. number *= -1; } // 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer. int magnitude = log10floor(number); // 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude). int exponent = compute_exponent_for_magniude(number_format, magnitude); // 5. Let x be x × 10^(-exponent). number *= pow(10, -exponent); // 6. Let formatNumberResult be FormatNumericToString(numberFormat, x). auto format_number_result = format_numeric_to_string(number_format, number); // 7. If formatNumberResult.[[RoundedNumber]] = 0, then if (format_number_result.rounded_number == 0) { // a. Return exponent. return exponent; } // 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer. int new_magnitude = log10floor(format_number_result.rounded_number); // 9. If newMagnitude is magnitude – exponent, then if (new_magnitude == magnitude - exponent) { // a. Return exponent. return exponent; } // 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1). return compute_exponent_for_magniude(number_format, magnitude + 1); } // 15.1.17 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude int compute_exponent_for_magniude(NumberFormat& number_format, int magnitude) { // 1. Let notation be numberFormat.[[Notation]]. switch (number_format.notation()) { // 2. If notation is "standard", then case NumberFormat::Notation::Standard: // a. Return 0. return 0; // 3. Else if notation is "scientific", then case NumberFormat::Notation::Scientific: // a. Return magnitude. return magnitude; // 4. Else if notation is "engineering", then case NumberFormat::Notation::Engineering: { // a. Let thousands be the greatest integer that is not greater than magnitude / 3. double thousands = floor(static_cast(magnitude) / 3.0); // b. Return thousands × 3. return static_cast(thousands) * 3; } // 5. Else, case NumberFormat::Notation::Compact: { // a. Assert: notation is "compact". VERIFY(number_format.has_compact_display()); // b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale. // c. Return exponent. Vector format_rules; if (number_format.style() == NumberFormat::Style::Currency) format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyShort); else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long) format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalLong); else format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalShort); Unicode::NumberFormat const* best_number_format = nullptr; for (auto const& format_rule : format_rules) { if (format_rule.magnitude > magnitude) break; best_number_format = &format_rule; } if (best_number_format == nullptr) return 0; number_format.set_compact_format(*best_number_format); return best_number_format->exponent; } default: VERIFY_NOT_REACHED(); } } }