/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Gfx { struct PNG_IHDR { NetworkOrdered width; NetworkOrdered height; u8 bit_depth { 0 }; PNG::ColorType color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; }; static_assert(AssertSize()); struct acTL_Chunk { NetworkOrdered num_frames; NetworkOrdered num_plays; }; static_assert(AssertSize()); struct fcTL_Chunk { enum class DisposeOp : u8 { APNG_DISPOSE_OP_NONE = 0, APNG_DISPOSE_OP_BACKGROUND, APNG_DISPOSE_OP_PREVIOUS }; enum class BlendOp : u8 { APNG_BLEND_OP_SOURCE = 0, APNG_BLEND_OP_OVER }; NetworkOrdered sequence_number; NetworkOrdered width; NetworkOrdered height; NetworkOrdered x_offset; NetworkOrdered y_offset; NetworkOrdered delay_num; NetworkOrdered delay_den; DisposeOp dispose_op { DisposeOp::APNG_DISPOSE_OP_NONE }; BlendOp blend_op { BlendOp::APNG_BLEND_OP_SOURCE }; }; static_assert(AssertSize()); struct ChromaticitiesAndWhitepoint { NetworkOrdered white_point_x; NetworkOrdered white_point_y; NetworkOrdered red_x; NetworkOrdered red_y; NetworkOrdered green_x; NetworkOrdered green_y; NetworkOrdered blue_x; NetworkOrdered blue_y; }; static_assert(AssertSize()); struct CodingIndependentCodePoints { u8 color_primaries; u8 transfer_function; u8 matrix_coefficients; u8 video_full_range_flag; }; static_assert(AssertSize()); struct EmbeddedICCProfile { StringView profile_name; ReadonlyBytes compressed_data; }; struct Scanline { PNG::FilterType filter; ReadonlyBytes data {}; }; struct [[gnu::packed]] PaletteEntry { u8 r; u8 g; u8 b; // u8 a; }; template struct [[gnu::packed]] Tuple { T gray; T a; }; template struct [[gnu::packed]] Triplet { T r; T g; T b; bool operator==(Triplet const& other) const = default; }; template struct [[gnu::packed]] Quartet { T r; T g; T b; T a; }; enum PngInterlaceMethod { Null = 0, Adam7 = 1 }; enum RenderingIntent { Perceptual = 0, RelativeColorimetric = 1, Saturation = 2, AbsoluteColorimetric = 3, }; struct AnimationFrame { fcTL_Chunk const& fcTL; RefPtr bitmap; ByteBuffer compressed_data; AnimationFrame(fcTL_Chunk const& fcTL) : fcTL(fcTL) { } u32 duration_ms() const { u32 num = fcTL.delay_num; if (num == 0) return 1; u32 denom = fcTL.delay_den != 0 ? static_cast(fcTL.delay_den) : 100u; return (num * 1000) / denom; } IntRect rect() const { return { fcTL.x_offset, fcTL.y_offset, fcTL.width, fcTL.height }; } }; struct PNGLoadingContext { enum State { NotDecoded = 0, Error, IHDRDecoded, ImageDataChunkDecoded, ChunksDecoded, BitmapDecoded, }; State state { State::NotDecoded }; u8 const* data { nullptr }; u8 const* data_current_ptr { nullptr }; size_t data_size { 0 }; i32 width { -1 }; i32 height { -1 }; u8 bit_depth { 0 }; PNG::ColorType color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; u8 channels { 0 }; u32 animation_next_expected_seq { 0 }; u32 animation_next_frame_to_render { 0 }; u32 animation_frame_count { 0 }; u32 animation_loop_count { 0 }; Optional last_completed_animation_frame_index; bool is_first_idat_part_of_animation { false }; bool has_seen_iend { false }; bool has_seen_idat_chunk { false }; bool has_seen_actl_chunk_before_idat { false }; bool has_alpha() const { return to_underlying(color_type) & 4 || palette_transparency_data.size() > 0; } Vector scanlines; ByteBuffer unfiltered_data; RefPtr bitmap; ByteBuffer compressed_data; Vector palette_data; ByteBuffer palette_transparency_data; Vector animation_frames; Optional chromaticities_and_whitepoint; Optional coding_independent_code_points; Optional gamma; Optional embedded_icc_profile; Optional decompressed_icc_profile; Optional sRGB_rendering_intent; Checked compute_row_size_for_width(int width) { Checked row_size = width; row_size *= channels; row_size *= bit_depth; row_size += 7; row_size /= 8; if (row_size.has_overflow()) { dbgln("PNG too large, integer overflow while computing row size"); state = State::Error; } return row_size; } PNGLoadingContext create_subimage_context(int width, int height) { PNGLoadingContext subimage_context; subimage_context.state = State::ChunksDecoded; subimage_context.width = width; subimage_context.height = height; subimage_context.channels = channels; subimage_context.color_type = color_type; subimage_context.palette_data = palette_data; subimage_context.palette_transparency_data = palette_transparency_data; subimage_context.bit_depth = bit_depth; subimage_context.filter_method = filter_method; return subimage_context; } }; class Streamer { public: Streamer(u8 const* data, size_t size) : m_data_ptr(data) , m_size_remaining(size) { } template bool read(T& value) { if (m_size_remaining < sizeof(T)) return false; value = *((NetworkOrdered const*)m_data_ptr); m_data_ptr += sizeof(T); m_size_remaining -= sizeof(T); return true; } bool read_bytes(u8* buffer, size_t count) { if (m_size_remaining < count) return false; memcpy(buffer, m_data_ptr, count); m_data_ptr += count; m_size_remaining -= count; return true; } bool wrap_bytes(ReadonlyBytes& buffer, size_t count) { if (m_size_remaining < count) return false; buffer = ReadonlyBytes { m_data_ptr, count }; m_data_ptr += count; m_size_remaining -= count; return true; } u8 const* current_data_ptr() const { return m_data_ptr; } bool at_end() const { return !m_size_remaining; } private: u8 const* m_data_ptr { nullptr }; size_t m_size_remaining { 0 }; }; static ErrorOr process_chunk(Streamer&, PNGLoadingContext& context); union [[gnu::packed]] Pixel { ARGB32 rgba { 0 }; u8 v[4]; struct { u8 r; u8 g; u8 b; u8 a; }; }; static_assert(AssertSize()); void PNGImageDecoderPlugin::unfilter_scanline(PNG::FilterType filter, Bytes scanline_data, ReadonlyBytes previous_scanlines_data, u8 bytes_per_complete_pixel) { // https://www.w3.org/TR/png-3/#9Filter-types // "Filters are applied to bytes, not to pixels, regardless of the bit depth or colour type of the image." switch (filter) { case PNG::FilterType::None: break; case PNG::FilterType::Sub: // This loop starts at bytes_per_complete_pixel because all bytes before that are // guaranteed to have no valid byte at index (i - bytes_per_complete pixel). // All such invalid byte indexes should be treated as 0, and adding 0 to the current // byte would do nothing, so the first bytes_per_complete_pixel bytes can instead // just be skipped. for (size_t i = bytes_per_complete_pixel; i < scanline_data.size(); ++i) { u8 left = scanline_data[i - bytes_per_complete_pixel]; scanline_data[i] += left; } break; case PNG::FilterType::Up: for (size_t i = 0; i < scanline_data.size(); ++i) { u8 above = previous_scanlines_data[i]; scanline_data[i] += above; } break; case PNG::FilterType::Average: for (size_t i = 0; i < scanline_data.size(); ++i) { u32 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel]; u32 above = previous_scanlines_data[i]; u8 average = (left + above) / 2; scanline_data[i] += average; } break; case PNG::FilterType::Paeth: for (size_t i = 0; i < scanline_data.size(); ++i) { u8 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel]; u8 above = previous_scanlines_data[i]; u8 upper_left = (i < bytes_per_complete_pixel) ? 0 : previous_scanlines_data[i - bytes_per_complete_pixel]; scanline_data[i] += PNG::paeth_predictor(left, above, upper_left); } break; } } template ALWAYS_INLINE static void unpack_grayscale_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* gray_values = reinterpret_cast(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = gray_values[i]; pixel.g = gray_values[i]; pixel.b = gray_values[i]; pixel.a = 0xff; } } } template ALWAYS_INLINE static void unpack_grayscale_with_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* tuples = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = tuples[i].gray; pixel.g = tuples[i].gray; pixel.b = tuples[i].gray; pixel.a = tuples[i].a; } } } template ALWAYS_INLINE static void unpack_triplets_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; pixel.a = 0xff; } } } template ALWAYS_INLINE static void unpack_triplets_with_transparency_value(PNGLoadingContext& context, Triplet transparency_value) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; if (triplets[i] == transparency_value) pixel.a = 0x00; else pixel.a = 0xff; } } } NEVER_INLINE FLATTEN static ErrorOr unfilter(PNGLoadingContext& context) { // First unfilter the scanlines: // FIXME: Instead of creating a separate buffer for the scanlines that need to be // mutated, the mutation could be done in place (if the data was non-const). size_t bytes_per_scanline = context.scanlines[0].data.size(); size_t bytes_needed_for_all_unfiltered_scanlines = 0; for (int y = 0; y < context.height; ++y) { if (context.scanlines[y].filter != PNG::FilterType::None) { bytes_needed_for_all_unfiltered_scanlines += bytes_per_scanline; } } context.unfiltered_data = TRY(ByteBuffer::create_uninitialized(bytes_needed_for_all_unfiltered_scanlines)); // From section 6.3 of http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html // "bpp is defined as the number of bytes per complete pixel, rounding up to one. // For example, for color type 2 with a bit depth of 16, bpp is equal to 6 // (three samples, two bytes per sample); for color type 0 with a bit depth of 2, // bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp // is equal to 4 (two-byte grayscale sample, plus two-byte alpha sample)." u8 bytes_per_complete_pixel = ceil_div(context.bit_depth, (u8)8) * context.channels; u8 dummy_scanline_bytes[bytes_per_scanline]; memset(dummy_scanline_bytes, 0, sizeof(dummy_scanline_bytes)); auto previous_scanlines_data = ReadonlyBytes { dummy_scanline_bytes, sizeof(dummy_scanline_bytes) }; for (int y = 0, data_start = 0; y < context.height; ++y) { if (context.scanlines[y].filter != PNG::FilterType::None) { auto scanline_data_slice = context.unfiltered_data.bytes().slice(data_start, bytes_per_scanline); // Copy the current values over and set the scanline's data to the to-be-mutated slice context.scanlines[y].data.copy_to(scanline_data_slice); context.scanlines[y].data = scanline_data_slice; PNGImageDecoderPlugin::unfilter_scanline(context.scanlines[y].filter, scanline_data_slice, previous_scanlines_data, bytes_per_complete_pixel); data_start += bytes_per_scanline; } previous_scanlines_data = context.scanlines[y].data; } // Now unpack the scanlines to RGBA: switch (context.color_type) { case PNG::ColorType::Greyscale: if (context.bit_depth == 8) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto bit_depth_squared = context.bit_depth * context.bit_depth; auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* gray_values = context.scanlines[y].data.data(); for (int x = 0; x < context.width; ++x) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (x % pixels_per_byte)); auto value = (gray_values[x / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[x]; pixel.r = value * (0xff / bit_depth_squared); pixel.g = value * (0xff / bit_depth_squared); pixel.b = value * (0xff / bit_depth_squared); pixel.a = 0xff; } } } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::GreyscaleWithAlpha: if (context.bit_depth == 8) { unpack_grayscale_with_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_with_alpha(context); } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::Truecolor: if (context.palette_transparency_data.size() == 6) { if (context.bit_depth == 8) { unpack_triplets_with_transparency_value(context, Triplet { context.palette_transparency_data[0], context.palette_transparency_data[2], context.palette_transparency_data[4] }); } else if (context.bit_depth == 16) { u16 tr = context.palette_transparency_data[0] | context.palette_transparency_data[1] << 8; u16 tg = context.palette_transparency_data[2] | context.palette_transparency_data[3] << 8; u16 tb = context.palette_transparency_data[4] | context.palette_transparency_data[5] << 8; unpack_triplets_with_transparency_value(context, Triplet { tr, tg, tb }); } else { VERIFY_NOT_REACHED(); } } else { if (context.bit_depth == 8) unpack_triplets_without_alpha(context); else if (context.bit_depth == 16) unpack_triplets_without_alpha(context); else VERIFY_NOT_REACHED(); } break; case PNG::ColorType::TruecolorWithAlpha: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { memcpy(context.bitmap->scanline(y), context.scanlines[y].data.data(), context.scanlines[y].data.size()); } } else if (context.bit_depth == 16) { for (int y = 0; y < context.height; ++y) { auto* quartets = reinterpret_cast const*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = quartets[i].r & 0xFF; pixel.g = quartets[i].g & 0xFF; pixel.b = quartets[i].b & 0xFF; pixel.a = quartets[i].a & 0xFF; } } } else { VERIFY_NOT_REACHED(); } break; case PNG::ColorType::IndexedColor: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { auto* palette_index = context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; if (palette_index[i] >= context.palette_data.size()) return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range"); auto& color = context.palette_data.at((int)palette_index[i]); auto transparency = context.palette_transparency_data.size() >= palette_index[i] + 1u ? context.palette_transparency_data[palette_index[i]] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* palette_indices = context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (i % pixels_per_byte)); auto palette_index = (palette_indices[i / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; if ((size_t)palette_index >= context.palette_data.size()) return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range"); auto& color = context.palette_data.at(palette_index); auto transparency = context.palette_transparency_data.size() >= palette_index + 1u ? context.palette_transparency_data[palette_index] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else { VERIFY_NOT_REACHED(); } break; default: VERIFY_NOT_REACHED(); break; } // Swap r and b values: for (int y = 0; y < context.height; ++y) { auto* pixels = (Pixel*)context.bitmap->scanline(y); for (int i = 0; i < context.bitmap->width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); } } return {}; } static bool decode_png_header(PNGLoadingContext& context) { if (!context.data || context.data_size < sizeof(PNG::header)) { dbgln_if(PNG_DEBUG, "Missing PNG header"); context.state = PNGLoadingContext::State::Error; return false; } if (memcmp(context.data, PNG::header.span().data(), sizeof(PNG::header)) != 0) { dbgln_if(PNG_DEBUG, "Invalid PNG header"); context.state = PNGLoadingContext::State::Error; return false; } context.data_current_ptr = context.data + sizeof(PNG::header); return true; } static ErrorOr decode_png_ihdr(PNGLoadingContext& context) { size_t data_remaining = context.data_size - (context.data_current_ptr - context.data); Streamer streamer(context.data_current_ptr, data_remaining); // https://www.w3.org/TR/png/#11IHDR // The IHDR chunk shall be the first chunk in the PNG datastream. TRY(process_chunk(streamer, context)); context.data_current_ptr = streamer.current_data_ptr(); VERIFY(context.state == PNGLoadingContext::State::IHDRDecoded); return {}; } static bool decode_png_image_data_chunk(PNGLoadingContext& context) { VERIFY(context.state >= PNGLoadingContext::IHDRDecoded); if (context.state >= PNGLoadingContext::ImageDataChunkDecoded) return true; size_t data_remaining = context.data_size - (context.data_current_ptr - context.data); Streamer streamer(context.data_current_ptr, data_remaining); while (!streamer.at_end() && !context.has_seen_iend) { if (auto result = process_chunk(streamer, context); result.is_error()) { context.state = PNGLoadingContext::State::Error; return false; } context.data_current_ptr = streamer.current_data_ptr(); if (context.state >= PNGLoadingContext::State::ImageDataChunkDecoded) return true; } return false; } static bool decode_png_animation_data_chunks(PNGLoadingContext& context, u32 requested_animation_frame_index) { if (context.state >= PNGLoadingContext::ImageDataChunkDecoded) { if (context.last_completed_animation_frame_index.has_value()) { if (requested_animation_frame_index <= context.last_completed_animation_frame_index.value()) return true; } } else if (!decode_png_image_data_chunk(context)) { return false; } size_t data_remaining = context.data_size - (context.data_current_ptr - context.data); Streamer streamer(context.data_current_ptr, data_remaining); while (!streamer.at_end() && !context.has_seen_iend) { if (auto result = process_chunk(streamer, context); result.is_error()) { context.state = PNGLoadingContext::State::Error; return false; } context.data_current_ptr = streamer.current_data_ptr(); if (context.last_completed_animation_frame_index.has_value()) { if (requested_animation_frame_index <= context.last_completed_animation_frame_index.value()) break; } } if (!context.last_completed_animation_frame_index.has_value()) return false; return requested_animation_frame_index <= context.last_completed_animation_frame_index.value(); } static bool decode_png_chunks(PNGLoadingContext& context) { VERIFY(context.state >= PNGLoadingContext::IHDRDecoded); if (context.state >= PNGLoadingContext::State::ChunksDecoded) return true; size_t data_remaining = context.data_size - (context.data_current_ptr - context.data); context.compressed_data.ensure_capacity(context.data_size); Streamer streamer(context.data_current_ptr, data_remaining); while (!streamer.at_end() && !context.has_seen_iend) { if (auto result = process_chunk(streamer, context); result.is_error()) { // Ignore failed chunk and just consider chunk decoding being done. // decode_png_bitmap() will check whether we got all required ones anyway. break; } context.data_current_ptr = streamer.current_data_ptr(); } context.state = PNGLoadingContext::State::ChunksDecoded; return true; } static ErrorOr decode_png_bitmap_simple(PNGLoadingContext& context, ByteBuffer& decompression_buffer) { Streamer streamer(decompression_buffer.data(), decompression_buffer.size()); for (int y = 0; y < context.height; ++y) { u8 filter_byte; if (!streamer.read(filter_byte)) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (filter_byte > 4) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter"); } context.scanlines.append({ MUST(PNG::filter_type(filter_byte)) }); auto& scanline_buffer = context.scanlines.last().data; auto row_size = context.compute_row_size_for_width(context.width); if (row_size.has_overflow()) return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow"); if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } } context.bitmap = TRY(Bitmap::create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height })); return unfilter(context); } static int adam7_height(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.height + 7) / 8; case 2: return (context.height + 7) / 8; case 3: return (context.height + 3) / 8; case 4: return (context.height + 3) / 4; case 5: return (context.height + 1) / 4; case 6: return (context.height + 1) / 2; case 7: return context.height / 2; default: VERIFY_NOT_REACHED(); } } static int adam7_width(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.width + 7) / 8; case 2: return (context.width + 3) / 8; case 3: return (context.width + 3) / 4; case 4: return (context.width + 1) / 4; case 5: return (context.width + 1) / 2; case 6: return context.width / 2; case 7: return context.width; default: VERIFY_NOT_REACHED(); } } // Index 0 unused (non-interlaced case) static int adam7_starty[8] = { 0, 0, 0, 4, 0, 2, 0, 1 }; static int adam7_startx[8] = { 0, 0, 4, 0, 2, 0, 1, 0 }; static int adam7_stepy[8] = { 1, 8, 8, 8, 4, 4, 2, 2 }; static int adam7_stepx[8] = { 1, 8, 8, 4, 4, 2, 2, 1 }; static ErrorOr decode_adam7_pass(PNGLoadingContext& context, Streamer& streamer, int pass) { auto subimage_context = context.create_subimage_context(adam7_width(context, pass), adam7_height(context, pass)); // For small images, some passes might be empty if (!subimage_context.width || !subimage_context.height) return {}; for (int y = 0; y < subimage_context.height; ++y) { u8 filter_byte; if (!streamer.read(filter_byte)) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (filter_byte > 4) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter"); } subimage_context.scanlines.append({ MUST(PNG::filter_type(filter_byte)) }); auto& scanline_buffer = subimage_context.scanlines.last().data; auto row_size = context.compute_row_size_for_width(subimage_context.width); if (row_size.has_overflow()) return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow"); if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) { context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } } subimage_context.bitmap = TRY(Bitmap::create(context.bitmap->format(), { subimage_context.width, subimage_context.height })); TRY(unfilter(subimage_context)); // Copy the subimage data into the main image according to the pass pattern for (int y = 0, dy = adam7_starty[pass]; y < subimage_context.height && dy < context.height; ++y, dy += adam7_stepy[pass]) { for (int x = 0, dx = adam7_startx[pass]; x < subimage_context.width && dx < context.width; ++x, dx += adam7_stepx[pass]) { context.bitmap->set_pixel(dx, dy, subimage_context.bitmap->get_pixel(x, y)); } } return {}; } static ErrorOr decode_png_adam7(PNGLoadingContext& context, ByteBuffer& decompression_buffer) { Streamer streamer(decompression_buffer.data(), decompression_buffer.size()); context.bitmap = TRY(Bitmap::create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height })); for (int pass = 1; pass <= 7; ++pass) TRY(decode_adam7_pass(context, streamer, pass)); return {}; } static ErrorOr decode_png_bitmap(PNGLoadingContext& context) { if (context.state < PNGLoadingContext::State::ChunksDecoded) { if (!decode_png_chunks(context)) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); } if (context.state >= PNGLoadingContext::State::BitmapDecoded) return {}; if (context.color_type == PNG::ColorType::IndexedColor && context.palette_data.is_empty()) return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see a PLTE chunk for a palletized image, or it was empty."); auto compressed_data_stream = make(context.compressed_data.span()); auto decompressor_or_error = Compress::ZlibDecompressor::create(move(compressed_data_stream)); if (decompressor_or_error.is_error()) { context.state = PNGLoadingContext::State::Error; return decompressor_or_error.release_error(); } auto decompressor = decompressor_or_error.release_value(); auto result_or_error = decompressor->read_until_eof(); if (result_or_error.is_error()) { context.state = PNGLoadingContext::State::Error; return result_or_error.release_error(); } auto decompression_buffer = result_or_error.release_value(); context.compressed_data.clear(); context.scanlines.ensure_capacity(context.height); switch (context.interlace_method) { case PngInterlaceMethod::Null: TRY(decode_png_bitmap_simple(context, decompression_buffer)); break; case PngInterlaceMethod::Adam7: TRY(decode_png_adam7(context, decompression_buffer)); break; default: context.state = PNGLoadingContext::State::Error; return Error::from_string_literal("PNGImageDecoderPlugin: Invalid interlace method"); } context.state = PNGLoadingContext::State::BitmapDecoded; return {}; } static ErrorOr> decode_png_animation_frame_bitmap(PNGLoadingContext& context, AnimationFrame& animation_frame) { if (context.color_type == PNG::ColorType::IndexedColor && context.palette_data.is_empty()) return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see a PLTE chunk for a palletized image, or it was empty."); VERIFY(!animation_frame.bitmap); auto frame_rect = animation_frame.rect(); auto frame_context = context.create_subimage_context(frame_rect.width(), frame_rect.height()); auto compressed_data_stream = make(animation_frame.compressed_data.span()); auto decompressor = TRY(Compress::ZlibDecompressor::create(move(compressed_data_stream))); auto decompression_buffer = TRY(decompressor->read_until_eof()); frame_context.compressed_data.clear(); frame_context.scanlines.ensure_capacity(frame_context.height); switch (context.interlace_method) { case PngInterlaceMethod::Null: TRY(decode_png_bitmap_simple(frame_context, decompression_buffer)); break; case PngInterlaceMethod::Adam7: TRY(decode_png_adam7(frame_context, decompression_buffer)); break; default: return Error::from_string_literal("PNGImageDecoderPlugin: Invalid interlace method"); } context.state = PNGLoadingContext::State::BitmapDecoded; return move(frame_context.bitmap); } static bool is_valid_compression_method(u8 compression_method) { return compression_method == 0; } static bool is_valid_filter_method(u8 filter_method) { return filter_method == 0; } static ErrorOr process_IHDR(ReadonlyBytes data, PNGLoadingContext& context) { if (data.size() < (int)sizeof(PNG_IHDR)) return Error::from_string_literal("IHDR chunk has an abnormal size"); auto const& ihdr = *(const PNG_IHDR*)data.data(); if (ihdr.width == 0 || ihdr.width > NumericLimits::max()) { dbgln("PNG has invalid width {}", ihdr.width); return Error::from_string_literal("Invalid width"); } if (ihdr.height == 0 || ihdr.height > NumericLimits::max()) { dbgln("PNG has invalid height {}", ihdr.height); return Error::from_string_literal("Invalid height"); } if (!is_valid_compression_method(ihdr.compression_method)) { dbgln("PNG has invalid compression method {}", ihdr.compression_method); return Error::from_string_literal("Unsupported compression method"); } if (!is_valid_filter_method(ihdr.filter_method)) { dbgln("PNG has invalid filter method {}", ihdr.filter_method); return Error::from_string_literal("Unsupported filter method"); } context.width = ihdr.width; context.height = ihdr.height; context.bit_depth = ihdr.bit_depth; context.color_type = ihdr.color_type; context.compression_method = ihdr.compression_method; context.filter_method = ihdr.filter_method; context.interlace_method = ihdr.interlace_method; dbgln_if(PNG_DEBUG, "PNG: {}x{} ({} bpp)", context.width, context.height, context.bit_depth); dbgln_if(PNG_DEBUG, " Color type: {}", to_underlying(context.color_type)); dbgln_if(PNG_DEBUG, "Compress Method: {}", context.compression_method); dbgln_if(PNG_DEBUG, " Filter Method: {}", context.filter_method); dbgln_if(PNG_DEBUG, " Interlace type: {}", context.interlace_method); if (context.interlace_method != PngInterlaceMethod::Null && context.interlace_method != PngInterlaceMethod::Adam7) { dbgln_if(PNG_DEBUG, "PNGLoader::process_IHDR: unknown interlace method: {}", context.interlace_method); return Error::from_string_literal("Unsupported interlacing method"); } switch (context.color_type) { case PNG::ColorType::Greyscale: if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8 && context.bit_depth != 16) return Error::from_string_literal("Unsupported bit depth for a greyscale image"); context.channels = 1; break; case PNG::ColorType::GreyscaleWithAlpha: if (context.bit_depth != 8 && context.bit_depth != 16) return Error::from_string_literal("Unsupported bit depth for a greyscale image with alpha"); context.channels = 2; break; case PNG::ColorType::Truecolor: if (context.bit_depth != 8 && context.bit_depth != 16) return Error::from_string_literal("Unsupported bit depth for a true color image"); context.channels = 3; break; case PNG::ColorType::IndexedColor: if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8) return Error::from_string_literal("Unsupported bit depth for a indexed color image"); context.channels = 1; break; case PNG::ColorType::TruecolorWithAlpha: if (context.bit_depth != 8 && context.bit_depth != 16) return Error::from_string_literal("Unsupported bit depth for a true color image with alpha"); context.channels = 4; break; default: return Error::from_string_literal("Unsupported color type"); } context.state = PNGLoadingContext::IHDRDecoded; return {}; } static ErrorOr process_IDAT(ReadonlyBytes data, PNGLoadingContext& context) { context.compressed_data.append(data); if (context.state < PNGLoadingContext::State::ImageDataChunkDecoded) context.state = PNGLoadingContext::State::ImageDataChunkDecoded; return {}; } static ErrorOr process_PLTE(ReadonlyBytes data, PNGLoadingContext& context) { TRY(context.palette_data.try_append((PaletteEntry const*)data.data(), data.size() / 3)); return {}; } static ErrorOr process_tRNS(ReadonlyBytes data, PNGLoadingContext& context) { switch (context.color_type) { case PNG::ColorType::Greyscale: case PNG::ColorType::Truecolor: case PNG::ColorType::IndexedColor: TRY(context.palette_transparency_data.try_append(data)); break; default: break; } return {}; } static ErrorOr process_cHRM(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#11cHRM if (data.size() != 32) return Error::from_string_literal("cHRM chunk has an abnormal size"); context.chromaticities_and_whitepoint = *bit_cast(data.data()); return {}; } static ErrorOr process_cICP(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#cICP-chunk if (data.size() != 4) return Error::from_string_literal("cICP chunk has an abnormal size"); context.coding_independent_code_points = *bit_cast(data.data()); return {}; } static ErrorOr process_iCCP(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#11iCCP size_t profile_name_length_max = min(80u, data.size()); size_t profile_name_length = strnlen((char const*)data.data(), profile_name_length_max); if (profile_name_length == 0 || profile_name_length == profile_name_length_max) return Error::from_string_literal("iCCP chunk does not contain a profile name"); if (data.size() < profile_name_length + 2) return Error::from_string_literal("iCCP chunk is too small"); u8 compression_method = data[profile_name_length + 1]; if (compression_method != 0) return Error::from_string_literal("Unsupported compression method in the iCCP chunk"); context.embedded_icc_profile = EmbeddedICCProfile { { data.data(), profile_name_length }, data.slice(profile_name_length + 2) }; return {}; } static ErrorOr process_gAMA(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#11gAMA if (data.size() != 4) return Error::from_string_literal("gAMA chunk has an abnormal size"); u32 gamma = *bit_cast const*>(data.data()); if (gamma & 0x8000'0000) return Error::from_string_literal("Gamma value is too high"); context.gamma = gamma; return {}; } static ErrorOr process_sRGB(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#srgb-standard-colour-space if (data.size() != 1) { // Invalid per spec, but (rarely) happens in the wild. Log and ignore. warnln("warning: PNG sRGB chunk has an abnormal size; ignoring"); return {}; } u8 rendering_intent = data[0]; if (rendering_intent > 3) return Error::from_string_literal("Unsupported rendering intent"); context.sRGB_rendering_intent = (RenderingIntent)rendering_intent; return {}; } static ErrorOr process_acTL(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#acTL-chunk if (context.has_seen_idat_chunk) return {}; // Ignore if we encounter it after the first idat if (data.size() != sizeof(acTL_Chunk)) return Error::from_string_literal("acTL chunk has an abnormal size"); auto const& acTL = *bit_cast(data.data()); context.animation_frame_count = acTL.num_frames; context.animation_loop_count = acTL.num_plays; context.has_seen_actl_chunk_before_idat = true; TRY(context.animation_frames.try_ensure_capacity(context.animation_frame_count)); return {}; } static ErrorOr process_fcTL(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#fcTL-chunk if (!context.has_seen_actl_chunk_before_idat) return {}; // Ignore if it's not a valid animated png if (data.size() != sizeof(fcTL_Chunk)) return Error::from_string_literal("fcTL chunk has an abnormal size"); auto const& fcTL = *bit_cast(data.data()); if (fcTL.sequence_number != context.animation_next_expected_seq) return Error::from_string_literal("Unexpected sequence number"); context.animation_next_expected_seq++; if (fcTL.width == 0 || fcTL.height == 0) return Error::from_string_literal("width and height must be greater than zero in fcTL chunk"); Checked left { static_cast(fcTL.x_offset) }; Checked top { static_cast(fcTL.y_offset) }; Checked width { static_cast(fcTL.width) }; Checked height { static_cast(fcTL.height) }; auto right = left + width; auto bottom = top + height; if (left < 0 || width <= 0 || right.has_overflow() || right > context.width) return Error::from_string_literal("Invalid x_offset value in fcTL chunk"); if (top < 0 || height <= 0 || bottom.has_overflow() || bottom > context.height) return Error::from_string_literal("Invalid y_offset value in fcTL chunk"); bool is_first_animation_frame = context.animation_frames.is_empty(); if (!is_first_animation_frame) context.last_completed_animation_frame_index = context.animation_frames.size() - 1; context.animation_frames.append({ fcTL }); if (!context.has_seen_idat_chunk && is_first_animation_frame) context.is_first_idat_part_of_animation = true; return {}; } static ErrorOr process_fdAT(ReadonlyBytes data, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#fdAT-chunk if (data.size() <= 4) return Error::from_string_literal("fdAT chunk has an abnormal size"); u32 sequence_number = *bit_cast const*>(data.data()); if (sequence_number != context.animation_next_expected_seq) return Error::from_string_literal("Unexpected sequence number"); context.animation_next_expected_seq++; if (context.animation_frames.is_empty()) return Error::from_string_literal("No frame available"); auto& current_animation_frame = context.animation_frames[context.animation_frames.size() - 1]; auto compressed_data = data.slice(4); current_animation_frame.compressed_data.append(compressed_data.data(), compressed_data.size()); return {}; } static void process_IEND(ReadonlyBytes, PNGLoadingContext& context) { // https://www.w3.org/TR/png/#11IEND if (context.has_seen_actl_chunk_before_idat) context.last_completed_animation_frame_index = context.animation_frames.size(); context.has_seen_iend = true; } static ErrorOr process_chunk(Streamer& streamer, PNGLoadingContext& context) { u32 chunk_size; if (!streamer.read(chunk_size)) { dbgln_if(PNG_DEBUG, "Bail at chunk_size"); return Error::from_string_literal("Error while reading from Streamer"); } Array chunk_type_buffer; StringView const chunk_type { chunk_type_buffer.span() }; if (!streamer.read_bytes(chunk_type_buffer.data(), chunk_type_buffer.size())) { dbgln_if(PNG_DEBUG, "Bail at chunk_type"); return Error::from_string_literal("Error while reading from Streamer"); } ReadonlyBytes chunk_data; if (!streamer.wrap_bytes(chunk_data, chunk_size)) { dbgln_if(PNG_DEBUG, "Bail at chunk_data"); return Error::from_string_literal("Error while reading from Streamer"); } u32 chunk_crc; if (!streamer.read(chunk_crc)) { dbgln_if(PNG_DEBUG, "Bail at chunk_crc"); return Error::from_string_literal("Error while reading from Streamer"); } dbgln_if(PNG_DEBUG, "Chunk type: '{}', size: {}, crc: {:x}", chunk_type, chunk_size, chunk_crc); if (chunk_type == "IHDR"sv) { if (context.state >= PNGLoadingContext::IHDRDecoded) return Error::from_string_literal("Multiple IHDR chunks"); return process_IHDR(chunk_data, context); } if (context.state < PNGLoadingContext::IHDRDecoded) return Error::from_string_literal("IHDR is not the first chunk of the file"); if (chunk_type == "IDAT"sv) return process_IDAT(chunk_data, context); if (chunk_type == "PLTE"sv) return process_PLTE(chunk_data, context); if (chunk_type == "cHRM"sv) return process_cHRM(chunk_data, context); if (chunk_type == "cICP"sv) return process_cICP(chunk_data, context); if (chunk_type == "iCCP"sv) return process_iCCP(chunk_data, context); if (chunk_type == "gAMA"sv) return process_gAMA(chunk_data, context); if (chunk_type == "sRGB"sv) return process_sRGB(chunk_data, context); if (chunk_type == "tRNS"sv) return process_tRNS(chunk_data, context); if (chunk_type == "acTL"sv) return process_acTL(chunk_data, context); if (chunk_type == "fcTL"sv) return process_fcTL(chunk_data, context); if (chunk_type == "fdAT"sv) return process_fdAT(chunk_data, context); if (chunk_type == "IEND"sv) process_IEND(chunk_data, context); return {}; } PNGImageDecoderPlugin::PNGImageDecoderPlugin(u8 const* data, size_t size) { m_context = make(); m_context->data = m_context->data_current_ptr = data; m_context->data_size = size; } PNGImageDecoderPlugin::~PNGImageDecoderPlugin() = default; bool PNGImageDecoderPlugin::ensure_image_data_chunk_was_decoded() { if (m_context->state == PNGLoadingContext::State::Error) return false; if (m_context->state < PNGLoadingContext::State::ImageDataChunkDecoded) { if (!decode_png_image_data_chunk(*m_context)) return false; } return true; } bool PNGImageDecoderPlugin::ensure_animation_frame_was_decoded(u32 animation_frame_index) { if (m_context->state == PNGLoadingContext::State::Error) return false; if (m_context->state < PNGLoadingContext::State::ImageDataChunkDecoded) { if (!decode_png_image_data_chunk(*m_context)) return false; } if (m_context->last_completed_animation_frame_index.has_value()) { if (m_context->last_completed_animation_frame_index.value() >= animation_frame_index) return true; } return decode_png_animation_data_chunks(*m_context, animation_frame_index); } IntSize PNGImageDecoderPlugin::size() { return { m_context->width, m_context->height }; } bool PNGImageDecoderPlugin::sniff(ReadonlyBytes data) { PNGLoadingContext context; context.data = context.data_current_ptr = data.data(); context.data_size = data.size(); return decode_png_header(context); } ErrorOr> PNGImageDecoderPlugin::create(ReadonlyBytes data) { auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) PNGImageDecoderPlugin(data.data(), data.size()))); if (!decode_png_header(*plugin->m_context)) return Error::from_string_literal("Invalid header for a PNG file"); TRY(decode_png_ihdr(*plugin->m_context)); return plugin; } bool PNGImageDecoderPlugin::is_animated() { if (!ensure_image_data_chunk_was_decoded()) return false; return m_context->has_seen_actl_chunk_before_idat; } size_t PNGImageDecoderPlugin::loop_count() { if (!ensure_image_data_chunk_was_decoded()) return 0; return m_context->animation_loop_count; } size_t PNGImageDecoderPlugin::frame_count() { if (!ensure_image_data_chunk_was_decoded()) return 0; if (!m_context->has_seen_actl_chunk_before_idat) return 1; auto total_frames = m_context->animation_frame_count; if (!m_context->is_first_idat_part_of_animation) total_frames++; return total_frames; } size_t PNGImageDecoderPlugin::first_animated_frame_index() { if (!ensure_image_data_chunk_was_decoded()) return 0; if (!m_context->has_seen_actl_chunk_before_idat) return 0; return m_context->is_first_idat_part_of_animation ? 0 : 1; } static ErrorOr> render_animation_frame(AnimationFrame const& prev_animation_frame, AnimationFrame& animation_frame, Bitmap const& decoded_frame_bitmap) { auto rendered_bitmap = TRY(prev_animation_frame.bitmap->clone()); Painter painter(rendered_bitmap); static constexpr Color transparent_black = { 0, 0, 0, 0 }; auto frame_rect = animation_frame.rect(); switch (prev_animation_frame.fcTL.dispose_op) { case fcTL_Chunk::DisposeOp::APNG_DISPOSE_OP_NONE: break; case fcTL_Chunk::DisposeOp::APNG_DISPOSE_OP_BACKGROUND: painter.clear_rect(rendered_bitmap->rect(), transparent_black); break; case fcTL_Chunk::DisposeOp::APNG_DISPOSE_OP_PREVIOUS: { painter.blit(frame_rect.location(), *prev_animation_frame.bitmap, frame_rect, 1.0f, false); break; } } switch (animation_frame.fcTL.blend_op) { case fcTL_Chunk::BlendOp::APNG_BLEND_OP_SOURCE: painter.blit(frame_rect.location(), decoded_frame_bitmap, decoded_frame_bitmap.rect(), 1.0f, false); break; case fcTL_Chunk::BlendOp::APNG_BLEND_OP_OVER: painter.blit(frame_rect.location(), decoded_frame_bitmap, decoded_frame_bitmap.rect(), 1.0f, true); break; } return rendered_bitmap; } ErrorOr PNGImageDecoderPlugin::frame(size_t index, Optional) { if (m_context->state == PNGLoadingContext::State::Error) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed"); if (!ensure_image_data_chunk_was_decoded()) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding image data chunk"); auto set_descriptor_duration = [](ImageFrameDescriptor& descriptor, AnimationFrame const& animation_frame) { descriptor.duration = static_cast(animation_frame.duration_ms()); if (descriptor.duration < 0) descriptor.duration = NumericLimits::min(); }; auto load_default_image = [&]() -> ErrorOr { if (m_context->state < PNGLoadingContext::State::BitmapDecoded) { // NOTE: This forces the chunk decoding to happen. TRY(decode_png_bitmap(*m_context)); } VERIFY(m_context->bitmap); return {}; }; if (index == 0) { TRY(load_default_image()); ImageFrameDescriptor descriptor { m_context->bitmap }; if (m_context->has_seen_actl_chunk_before_idat && m_context->is_first_idat_part_of_animation) set_descriptor_duration(descriptor, m_context->animation_frames[0]); return descriptor; } if (!m_context->has_seen_actl_chunk_before_idat) return Error::from_string_literal("PNGImageDecoderPlugin: Invalid frame index"); if (!ensure_animation_frame_was_decoded(index)) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding image data chunk"); if (index >= m_context->animation_frames.size()) return Error::from_string_literal("PNGImageDecoderPlugin: Invalid animation frame index"); // We need to assemble each frame up until the one requested, // so decode all bitmaps that haven't been decoded yet. for (size_t i = m_context->animation_next_frame_to_render; i <= index; i++) { if (i == 0) { // If the default image hasn't been loaded, load it now TRY(load_default_image()); // May modify animation_frames! auto& animation_frame = m_context->animation_frames[i]; animation_frame.bitmap = m_context->bitmap; } else { auto& animation_frame = m_context->animation_frames[i]; VERIFY(!animation_frame.bitmap); auto decoded_bitmap = TRY(decode_png_animation_frame_bitmap(*m_context, animation_frame)); auto prev_animation_frame = m_context->animation_frames[i - 1]; animation_frame.bitmap = TRY(render_animation_frame(prev_animation_frame, animation_frame, *decoded_bitmap)); } m_context->animation_next_frame_to_render = i + 1; } auto const& animation_frame = m_context->animation_frames[index]; VERIFY(animation_frame.bitmap); ImageFrameDescriptor descriptor { animation_frame.bitmap }; set_descriptor_duration(descriptor, animation_frame); return descriptor; } ErrorOr> PNGImageDecoderPlugin::icc_data() { if (!decode_png_chunks(*m_context)) return Error::from_string_literal("PNGImageDecoderPlugin: Decoding chunks failed"); if (m_context->embedded_icc_profile.has_value()) { if (!m_context->decompressed_icc_profile.has_value()) { auto compressed_data_stream = make(m_context->embedded_icc_profile->compressed_data); auto decompressor_or_error = Compress::ZlibDecompressor::create(move(compressed_data_stream)); if (decompressor_or_error.is_error()) { m_context->embedded_icc_profile.clear(); return decompressor_or_error.release_error(); } auto decompressor = decompressor_or_error.release_value(); auto result_or_error = decompressor->read_until_eof(); if (result_or_error.is_error()) { m_context->embedded_icc_profile.clear(); return result_or_error.release_error(); } m_context->decompressed_icc_profile = result_or_error.release_value(); } return m_context->decompressed_icc_profile.value(); } // FIXME: Eventually, look at coding_independent_code_points, chromaticities_and_whitepoint, gamma, sRGB_rendering_intent too. // The order is: // 1. Use coding_independent_code_points if it exists, ignore the rest. // 2. Use embedded_icc_profile if it exists, ignore the rest. // 3. Use sRGB_rendering_intent if it exists, ignore the rest. // 4. Use gamma to adjust gamma and chromaticities_and_whitepoint to adjust color. // (Order between 2 and 3 isn't fully clear, but "It is recommended that the sRGB and iCCP chunks do not appear simultaneously in a PNG datastream." return OptionalNone {}; } }