#include "MemoryManager.h" #include #include #include #include "i386.h" #include "StdLib.h" #include "Task.h" //#define MM_DEBUG static MemoryManager* s_the; MemoryManager& MM { return *s_the; } MemoryManager::MemoryManager() { m_kernel_page_directory = (dword*)0x5000; m_pageTableZero = (dword*)0x6000; m_pageTableOne = (dword*)0x7000; m_next_laddr.set(0xd0000000); initializePaging(); } MemoryManager::~MemoryManager() { } void MemoryManager::populate_page_directory(Task& task) { memset(task.m_pageDirectory, 0, 4096); task.m_pageDirectory[0] = m_kernel_page_directory[0]; task.m_pageDirectory[1] = m_kernel_page_directory[1]; } void MemoryManager::initializePaging() { static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4); static_assert(sizeof(MemoryManager::PageTableEntry) == 4); memset(m_pageTableZero, 0, 4096); memset(m_pageTableOne, 0, 4096); memset(m_kernel_page_directory, 0, 4096); #ifdef MM_DEBUG kprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory); #endif // Make null dereferences crash. protectMap(LinearAddress(0), 4 * KB); // The bottom 4 MB are identity mapped & supervisor only. Every process shares this mapping. identityMap(LinearAddress(4096), 4 * MB); for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE) { m_freePages.append(PhysicalAddress(i)); } asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory)); asm volatile( "movl %cr0, %eax\n" "orl $0x80000001, %eax\n" "movl %eax, %cr0\n" ); } void* MemoryManager::allocatePageTable() { auto ppages = allocatePhysicalPages(1); dword address = ppages[0].get(); identityMap(LinearAddress(address), 4096); memset((void*)address, 0, 4096); return (void*)address; } auto MemoryManager::ensurePTE(dword* page_directory, LinearAddress laddr) -> PageTableEntry { ASSERT_INTERRUPTS_DISABLED(); dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff; dword pageTableIndex = (laddr.get() >> 12) & 0x3ff; PageDirectoryEntry pde = PageDirectoryEntry(&page_directory[pageDirectoryIndex]); if (!pde.isPresent()) { #ifdef MM_DEBUG dbgprintf("MM: PDE %u not present, allocating\n", pageDirectoryIndex); #endif if (pageDirectoryIndex == 0) { pde.setPageTableBase((dword)m_pageTableZero); pde.setUserAllowed(false); pde.setPresent(true); pde.setWritable(true); } else if (pageDirectoryIndex == 1) { pde.setPageTableBase((dword)m_pageTableOne); pde.setUserAllowed(false); pde.setPresent(true); pde.setWritable(true); } else { auto* pageTable = allocatePageTable(); #ifdef MM_DEBUG dbgprintf("MM: PDE %x allocated page table #%u (for laddr=%p) at %p\n", page_directory, pageDirectoryIndex, laddr.get(), pageTable); #endif pde.setPageTableBase((dword)pageTable); pde.setUserAllowed(true); pde.setPresent(true); pde.setWritable(true); } } return PageTableEntry(&pde.pageTableBase()[pageTableIndex]); } void MemoryManager::protectMap(LinearAddress linearAddress, size_t length) { InterruptDisabler disabler; // FIXME: ASSERT(linearAddress is 4KB aligned); for (dword offset = 0; offset < length; offset += 4096) { auto pteAddress = linearAddress.offset(offset); auto pte = ensurePTE(m_kernel_page_directory, pteAddress); pte.setPhysicalPageBase(pteAddress.get()); pte.setUserAllowed(false); pte.setPresent(false); pte.setWritable(false); flushTLB(pteAddress); } } void MemoryManager::identityMap(LinearAddress linearAddress, size_t length) { InterruptDisabler disabler; // FIXME: ASSERT(linearAddress is 4KB aligned); for (dword offset = 0; offset < length; offset += 4096) { auto pteAddress = linearAddress.offset(offset); auto pte = ensurePTE(m_kernel_page_directory, pteAddress); pte.setPhysicalPageBase(pteAddress.get()); pte.setUserAllowed(false); pte.setPresent(true); pte.setWritable(true); flushTLB(pteAddress); } } void MemoryManager::initialize() { s_the = new MemoryManager; } PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault) { ASSERT_INTERRUPTS_DISABLED(); kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get()); if (fault.isNotPresent()) { kprintf(" >> NP fault!\n"); } else if (fault.isProtectionViolation()) { kprintf(" >> PV fault!\n"); } return PageFaultResponse::ShouldCrash; } void MemoryManager::registerZone(Zone& zone) { ASSERT_INTERRUPTS_DISABLED(); m_zones.set(&zone); } void MemoryManager::unregisterZone(Zone& zone) { ASSERT_INTERRUPTS_DISABLED(); m_zones.remove(&zone); m_freePages.append(move(zone.m_pages)); } Zone::Zone(Vector&& pages) : m_pages(move(pages)) { MM.registerZone(*this); } Zone::~Zone() { MM.unregisterZone(*this); } RetainPtr MemoryManager::createZone(size_t size) { InterruptDisabler disabler; auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE)); if (pages.isEmpty()) { kprintf("MM: createZone: no physical pages for size %u\n", size); return nullptr; } return adopt(*new Zone(move(pages))); } Vector MemoryManager::allocatePhysicalPages(size_t count) { InterruptDisabler disabler; if (count > m_freePages.size()) return { }; Vector pages; pages.ensureCapacity(count); for (size_t i = 0; i < count; ++i) pages.append(m_freePages.takeLast()); return pages; } byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress) { ASSERT_INTERRUPTS_DISABLED(); auto pte = ensurePTE(m_kernel_page_directory, LinearAddress(4 * MB)); kprintf("MM: quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr()); pte.setPhysicalPageBase(physicalAddress.pageBase()); pte.setPresent(true); pte.setWritable(true); flushTLB(LinearAddress(4 * MB)); return (byte*)(4 * MB); } void MemoryManager::enter_kernel_paging_scope() { InterruptDisabler disabler; current->m_tss.cr3 = (dword)m_kernel_page_directory; asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory)); } void MemoryManager::enter_task_paging_scope(Task& task) { InterruptDisabler disabler; current->m_tss.cr3 = (dword)task.m_pageDirectory; asm volatile("movl %%eax, %%cr3"::"a"(task.m_pageDirectory)); } void MemoryManager::flushEntireTLB() { asm volatile( "mov %cr3, %eax\n" "mov %eax, %cr3\n" ); } void MemoryManager::flushTLB(LinearAddress laddr) { asm volatile("invlpg %0": :"m" (*(char*)laddr.get())); } void MemoryManager::map_region_at_address(dword* page_directory, Task::Region& region, LinearAddress laddr) { InterruptDisabler disabler; auto& zone = *region.zone; for (size_t i = 0; i < zone.m_pages.size(); ++i) { auto page_laddr = laddr.offset(i * PAGE_SIZE); auto pte = ensurePTE(page_directory, page_laddr); pte.setPhysicalPageBase(zone.m_pages[i].get()); pte.setPresent(true); pte.setWritable(true); pte.setUserAllowed(true); flushTLB(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: >> map_region_at_address (PD=%x) L%x => P%x\n", page_directory, page_laddr, zone.m_pages[i].get()); #endif } } void MemoryManager::unmap_range(dword* page_directory, LinearAddress laddr, size_t size) { ASSERT((size % PAGE_SIZE) == 0); InterruptDisabler disabler; size_t numPages = size / 4096; for (size_t i = 0; i < numPages; ++i) { auto page_laddr = laddr.offset(i * PAGE_SIZE); auto pte = ensurePTE(page_directory, page_laddr); pte.setPhysicalPageBase(0); pte.setPresent(false); pte.setWritable(false); pte.setUserAllowed(false); flushTLB(page_laddr); #ifdef MM_DEBUG dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr); #endif } } LinearAddress MemoryManager::allocate_linear_address_range(size_t size) { ASSERT((size % PAGE_SIZE) == 0); // FIXME: Recycle ranges! auto laddr = m_next_laddr; m_next_laddr.set(m_next_laddr.get() + size); return laddr; } byte* MemoryManager::create_kernel_alias_for_region(Task::Region& region) { InterruptDisabler disabler; auto laddr = allocate_linear_address_range(region.size); map_region_at_address(m_kernel_page_directory, region, laddr); return laddr.asPtr(); } void MemoryManager::remove_kernel_alias_for_region(Task::Region& region, byte* addr) { unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size); } bool MemoryManager::unmapRegion(Task& task, Task::Region& region) { InterruptDisabler disabler; auto& zone = *region.zone; for (size_t i = 0; i < zone.m_pages.size(); ++i) { auto laddr = region.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(task.m_pageDirectory, laddr); pte.setPhysicalPageBase(0); pte.setPresent(false); pte.setWritable(false); pte.setUserAllowed(false); flushTLB(laddr); #ifdef MM_DEBUG //dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get()); #endif } return true; } bool MemoryManager::unmapSubregion(Task& task, Task::Subregion& subregion) { InterruptDisabler disabler; size_t numPages = subregion.size / 4096; ASSERT(numPages); for (size_t i = 0; i < numPages; ++i) { auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(task.m_pageDirectory, laddr); pte.setPhysicalPageBase(0); pte.setPresent(false); pte.setWritable(false); pte.setUserAllowed(false); flushTLB(laddr); #ifdef MM_DEBUG //dbgprintf("MM: >> Unmapped subregion %s L%x => P%x <<\n", subregion.name.characters(), laddr, zone.m_pages[i].get()); #endif } return true; } bool MemoryManager::mapSubregion(Task& task, Task::Subregion& subregion) { InterruptDisabler disabler; auto& region = *subregion.region; auto& zone = *region.zone; size_t firstPage = subregion.offset / 4096; size_t numPages = subregion.size / 4096; ASSERT(numPages); for (size_t i = 0; i < numPages; ++i) { auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE); auto pte = ensurePTE(task.m_pageDirectory, laddr); pte.setPhysicalPageBase(zone.m_pages[firstPage + i].get()); pte.setPresent(true); pte.setWritable(true); pte.setUserAllowed(true); flushTLB(laddr); #ifdef MM_DEBUG //dbgprintf("MM: >> Mapped subregion %s L%x => P%x (%u into region)\n", subregion.name.characters(), laddr, zone.m_pages[firstPage + i].get(), subregion.offset); #endif } return true; } bool MemoryManager::mapRegion(Task& task, Task::Region& region) { map_region_at_address(task.m_pageDirectory, region, region.linearAddress); return true; } bool MemoryManager::validate_user_read(const Task& task, LinearAddress laddr) const { dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff; dword pageTableIndex = (laddr.get() >> 12) & 0x3ff; auto pde = PageDirectoryEntry(&task.m_pageDirectory[pageDirectoryIndex]); if (!pde.isPresent()) return false; auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]); if (!pte.isPresent()) return false; if (!pte.isUserAllowed()) return false; return true; } bool MemoryManager::validate_user_write(const Task& task, LinearAddress laddr) const { dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff; dword pageTableIndex = (laddr.get() >> 12) & 0x3ff; auto pde = PageDirectoryEntry(&task.m_pageDirectory[pageDirectoryIndex]); if (!pde.isPresent()) return false; auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]); if (!pte.isPresent()) return false; if (!pte.isUserAllowed()) return false; if (!pte.isWritable()) return false; return true; } bool MemoryManager::mapRegionsForTask(Task& task) { ASSERT_INTERRUPTS_DISABLED(); for (auto& region : task.m_regions) { if (!mapRegion(task, *region)) return false; } for (auto& subregion : task.m_subregions) { if (!mapSubregion(task, *subregion)) return false; } return true; } bool copyToZone(Zone& zone, const void* data, size_t size) { if (zone.size() < size) { kprintf("MM: copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size()); return false; } InterruptDisabler disabler; auto* dataptr = (const byte*)data; size_t remaining = size; for (size_t i = 0; i < zone.m_pages.size(); ++i) { byte* dest = MM.quickMapOnePage(zone.m_pages[i]); kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining)); memcpy(dest, dataptr, min(PAGE_SIZE, remaining)); dataptr += PAGE_SIZE; remaining -= PAGE_SIZE; } return true; }