/* * Copyright (c) 2020, Itamar S. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "UnsignedBigInteger.h" namespace Crypto { /** * Complexity: O(N) where N is the number of words in the larger number */ UnsignedBigInteger UnsignedBigInteger::add(const UnsignedBigInteger& other) const { const UnsignedBigInteger* const longer = (length() > other.length()) ? this : &other; const UnsignedBigInteger* const shorter = (longer == &other) ? this : &other; UnsignedBigInteger result; u8 carry = 0; for (size_t i = 0; i < shorter->length(); ++i) { u32 word_addition_result = shorter->m_words[i] + longer->m_words[i]; u8 carry_out = 0; // if there was a carry, the result will be smaller than any of the operands if (word_addition_result + carry < shorter->m_words[i]) { carry_out = 1; } if (carry) { word_addition_result++; } carry = carry_out; result.m_words.append(word_addition_result); } for (size_t i = shorter->length(); i < longer->length(); ++i) { u32 word_addition_result = longer->m_words[i] + carry; carry = 0; if (word_addition_result < longer->m_words[i]) { carry = 1; } result.m_words.append(word_addition_result); } if (carry) { result.m_words.append(carry); } return result; } /** * Complexity: O(N) where N is the number of words in the larger number */ UnsignedBigInteger UnsignedBigInteger::sub(const UnsignedBigInteger& other) const { UnsignedBigInteger result; if (*this < other) { return UnsignedBigInteger::create_invalid(); } u8 borrow = 0; for (size_t i = 0; i < other.length(); ++i) { // This assertion should not fail, because we verified that *this>other at the beginning of the function ASSERT(!(borrow == 1 && m_words[i] == 0)); if (m_words[i] - borrow < other.m_words[i]) { u64 after_borrow = static_cast(m_words[i] - borrow) + (UINT32_MAX + 1); result.m_words.append(static_cast(after_borrow - static_cast(other.m_words[i]))); borrow = 1; } else { result.m_words.append(m_words[i] - borrow - other.m_words[i]); borrow = 0; } } for (size_t i = other.length(); i < length(); ++i) { ASSERT(!(borrow == 1 && m_words[i] == 0)); result.m_words.append(m_words[i] - borrow); borrow = 0; } return result; } /** * Complexity: O(N^2) where N is the number of words in the larger number * Multiplcation method: * An integer is equal to the sum of the powers of two * according to the indexes of its 'on' bits. * So to multiple x*y, we go over each '1' bit in x (say the i'th bit), * and add y<= 0; --word_index) { for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) { const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index; UnsignedBigInteger divisor_shifted = divisor.shift_left(shift_amount); UnsignedBigInteger temp_subtraction_result = leftover_dividend.sub(divisor_shifted); if (!temp_subtraction_result.is_invalid()) { leftover_dividend = temp_subtraction_result; quotient.set_bit_inplace(shift_amount); } } } return UnsignedDivisionResult { quotient, leftover_dividend }; } void UnsignedBigInteger::set_bit_inplace(size_t bit_index) { const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD; const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD; for (size_t i = length(); i <= word_index; ++i) { m_words.append(0); } m_words[word_index] |= (1 << inner_word_index); } UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const { // We can only do shift operations on individual words // where the shift amount is <= size of word (32). // But we do know how to shift by a multiple of word size (e.g 64=32*2) // So we first shift the result by how many whole words fit in 'num_bits' UnsignedBigInteger temp_result = shift_left_by_n_words(num_bits / UnsignedBigInteger::BITS_IN_WORD); // And now we shift by the leftover amount of bits num_bits %= UnsignedBigInteger::BITS_IN_WORD; UnsignedBigInteger result(temp_result); for (size_t i = 0; i < temp_result.length(); ++i) { u32 current_word_of_temp_result = temp_result.shift_left_get_one_word(num_bits, i); result.m_words[i] = current_word_of_temp_result; } // Shifting the last word can produce a carry u32 carry_word = temp_result.shift_left_get_one_word(num_bits, temp_result.length()); if (carry_word != 0) { result = result.add(UnsignedBigInteger(carry_word).shift_left_by_n_words(temp_result.length())); } return result; } UnsignedBigInteger UnsignedBigInteger::shift_left_by_n_words(const size_t number_of_words) const { // shifting left by N words means just inserting N zeroes to the beginning of the words vector UnsignedBigInteger result; for (size_t i = 0; i < number_of_words; ++i) { result.m_words.append(0); } for (size_t i = 0; i < length(); ++i) { result.m_words.append(m_words[i]); } return result; } /** * Returns the word at a requested index in the result of a shift operation */ u32 UnsignedBigInteger::shift_left_get_one_word(const size_t num_bits, const size_t result_word_index) const { // "<= length()" (rather than length() - 1) is intentional, // The result inedx of length() is used when calculating the carry word ASSERT(result_word_index <= length()); ASSERT(num_bits <= UnsignedBigInteger::BITS_IN_WORD); u32 result = 0; // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour! if (result_word_index > 0 && num_bits != 0) { result += m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits); } if (result_word_index < length() && num_bits < 32) { result += m_words[result_word_index] << num_bits; } return result; } bool UnsignedBigInteger::operator==(const UnsignedBigInteger& other) const { if (trimmed_length() != other.trimmed_length()) { return false; } if (is_invalid() != other.is_invalid()) { return false; } for (size_t i = 0; i < trimmed_length(); ++i) { if (m_words[i] != other.words()[i]) return false; } return true; } bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const { if (trimmed_length() < other.trimmed_length()) { return true; } if (trimmed_length() > other.trimmed_length()) { return false; } int length = trimmed_length(); if (length == 0) { return false; } for (int i = length - 1; i >= 0; --i) { if (m_words[i] == other.m_words[i]) continue; return m_words[i] < other.m_words[i]; } return false; } size_t UnsignedBigInteger::trimmed_length() const { size_t num_leading_zeroes = 0; for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) { if (m_words[i] != 0) break; } return length() - num_leading_zeroes; } UnsignedBigInteger UnsignedBigInteger::create_invalid() { UnsignedBigInteger invalid(0); invalid.invalidate(); return invalid; } }