/* * Copyright (c) 2022-2023, Martin Falisse * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include namespace Web::Layout { GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_from_definition(CSS::ExplicitGridTrack const& definition) { // NOTE: repeat() is expected to be expanded beforehand. VERIFY(!definition.is_repeat()); if (definition.is_minmax()) { return GridTrack { .min_track_sizing_function = definition.minmax().min_grid_size(), .max_track_sizing_function = definition.minmax().max_grid_size(), }; } return GridTrack { .min_track_sizing_function = definition.grid_size(), .max_track_sizing_function = definition.grid_size(), }; } GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_auto() { return GridTrack { .min_track_sizing_function = CSS::GridSize::make_auto(), .max_track_sizing_function = CSS::GridSize::make_auto(), }; } GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_gap(CSSPixels size) { return GridTrack { .min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)), .max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)), .base_size = size, .is_gap = true, }; } GridFormattingContext::GridFormattingContext(LayoutState& state, Box const& grid_container, FormattingContext* parent) : FormattingContext(Type::Grid, state, grid_container, parent) { } GridFormattingContext::~GridFormattingContext() = default; CSSPixels GridFormattingContext::resolve_definite_track_size(CSS::GridSize const& grid_size, AvailableSpace const& available_space) { VERIFY(grid_size.is_definite()); switch (grid_size.type()) { case CSS::GridSize::Type::LengthPercentage: { if (!grid_size.length_percentage().is_auto()) { return grid_size.css_size().to_px(grid_container(), available_space.width.to_px()); } break; } default: VERIFY_NOT_REACHED(); } return 0; } int GridFormattingContext::get_count_of_tracks(Vector const& track_list, AvailableSpace const& available_space) { auto track_count = 0; for (auto const& explicit_grid_track : track_list) { if (explicit_grid_track.is_repeat() && explicit_grid_track.repeat().is_default()) track_count += explicit_grid_track.repeat().repeat_count() * explicit_grid_track.repeat().grid_track_size_list().track_list().size(); else track_count += 1; } if (track_list.size() == 1 && track_list.first().is_repeat() && (track_list.first().repeat().is_auto_fill() || track_list.first().repeat().is_auto_fit())) { track_count = count_of_repeated_auto_fill_or_fit_tracks(track_list, available_space); } return track_count; } int GridFormattingContext::count_of_repeated_auto_fill_or_fit_tracks(Vector const& track_list, AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-2/#auto-repeat // 7.2.3.2. Repeat-to-fill: auto-fill and auto-fit repetitions // On a subgridded axis, the auto-fill keyword is only valid once per , and repeats // enough times for the name list to match the subgrid’s specified grid span (falling back to 0 if // the span is already fulfilled). // Otherwise on a standalone axis, when auto-fill is given as the repetition number // If the grid container has a definite size or max size in the relevant axis, then the number of // repetitions is the largest possible positive integer that does not cause the grid to overflow the // content box of its grid container CSSPixels sum_of_grid_track_sizes = 0; // (treating each track as its max track sizing function if that is definite or its minimum track sizing // function otherwise, flooring the max track sizing function by the min track sizing function if both // are definite, and taking gap into account) // FIXME: take gap into account for (auto& explicit_grid_track : track_list.first().repeat().grid_track_size_list().track_list()) { auto track_sizing_function = explicit_grid_track; if (track_sizing_function.is_minmax()) { if (track_sizing_function.minmax().max_grid_size().is_definite() && !track_sizing_function.minmax().min_grid_size().is_definite()) sum_of_grid_track_sizes += resolve_definite_track_size(track_sizing_function.minmax().max_grid_size(), available_space); else if (track_sizing_function.minmax().min_grid_size().is_definite() && !track_sizing_function.minmax().max_grid_size().is_definite()) sum_of_grid_track_sizes += resolve_definite_track_size(track_sizing_function.minmax().min_grid_size(), available_space); else if (track_sizing_function.minmax().min_grid_size().is_definite() && track_sizing_function.minmax().max_grid_size().is_definite()) sum_of_grid_track_sizes += min(resolve_definite_track_size(track_sizing_function.minmax().min_grid_size(), available_space), resolve_definite_track_size(track_sizing_function.minmax().max_grid_size(), available_space)); } else { sum_of_grid_track_sizes += min(resolve_definite_track_size(track_sizing_function.grid_size(), available_space), resolve_definite_track_size(track_sizing_function.grid_size(), available_space)); } } return max(1, static_cast((get_free_space(available_space, GridDimension::Column).to_px() / sum_of_grid_track_sizes).to_double())); // For the purpose of finding the number of auto-repeated tracks in a standalone axis, the UA must // floor the track size to a UA-specified value to avoid division by zero. It is suggested that this // floor be 1px. } void GridFormattingContext::place_item_with_row_and_column_position(Box const& child_box) { int row_start = child_box.computed_values().grid_row_start().raw_value() - 1; int row_end = child_box.computed_values().grid_row_end().raw_value() - 1; int column_start = child_box.computed_values().grid_column_start().raw_value() - 1; int column_end = child_box.computed_values().grid_column_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = m_occupation_grid.row_count() + row_end + 2; if (column_end < 0) column_end = m_occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. size_t row_span = 1; size_t column_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; } if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_column_end().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_column_end().line_name()); maybe_grid_area.has_value()) column_end = maybe_grid_area->column_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_end().line_name(), grid_container().computed_values().grid_template_columns()); line_name_index > -1) column_end = line_name_index; else column_end = 1; column_start = column_end - 1; } if (child_box.computed_values().grid_column_start().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_column_end().line_name()); maybe_grid_area.has_value()) column_start = maybe_grid_area->column_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_start().line_name(), grid_container().computed_values().grid_template_columns()); line_name_index > -1) column_start = line_name_index; else column_start = 0; } if (child_box.computed_values().grid_row_end().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_row_end().line_name()); maybe_grid_area.has_value()) row_end = maybe_grid_area->row_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_end().line_name(), grid_container().computed_values().grid_template_rows()); line_name_index > -1) row_end = line_name_index; else row_end = 1; row_start = row_end - 1; } if (child_box.computed_values().grid_row_start().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_row_end().line_name()); maybe_grid_area.has_value()) row_start = maybe_grid_area->row_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_start().line_name(), grid_container().computed_values().grid_template_rows()); line_name_index > -1) row_start = line_name_index; else row_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. m_grid_items.append(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); } void GridFormattingContext::place_item_with_row_position(Box const& child_box) { int row_start = child_box.computed_values().grid_row_start().raw_value() - 1; int row_end = child_box.computed_values().grid_row_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = m_occupation_grid.row_count() + row_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. size_t row_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1 if (row_start < 0) row_start = 0; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_row_end().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_row_end().line_name()); maybe_grid_area.has_value()) row_end = maybe_grid_area->row_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_end().line_name(), grid_container().computed_values().grid_template_rows()); line_name_index > -1) row_end = line_name_index; else row_end = 1; row_start = row_end - 1; } if (child_box.computed_values().grid_row_start().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_row_end().line_name()); maybe_grid_area.has_value()) row_start = maybe_grid_area->row_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_row_start().line_name(), grid_container().computed_values().grid_template_rows()); line_name_index > -1) row_start = line_name_index; else row_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position() && row_end == 0) row_start = 0; // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. int column_start = 0; size_t column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1; bool found_available_column = false; for (size_t column_index = column_start; column_index < m_occupation_grid.column_count(); column_index++) { if (!m_occupation_grid.is_occupied(column_index, row_start)) { found_available_column = true; column_start = column_index; break; } } if (!found_available_column) { column_start = m_occupation_grid.column_count(); } m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); m_grid_items.append(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::place_item_with_column_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { int column_start; if (child_box.computed_values().grid_column_start().raw_value() > 0) { column_start = child_box.computed_values().grid_column_start().raw_value() - 1; } else { // NOTE: Negative indexes count from the end side of the explicit grid column_start = m_explicit_columns_line_count + child_box.computed_values().grid_column_start().raw_value(); } int column_end = child_box.computed_values().grid_column_end().raw_value() - 1; // https://www.w3.org/TR/css-grid-2/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://www.w3.org/TR/css-grid-2/#grid-placement-slot // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Otherwise, treat this as if the integer 1 had been specified along with the . // https://www.w3.org/TR/css-grid-2/#grid-placement-int // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (column_end < 0) column_end = m_occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // https://www.w3.org/TR/css-grid-2/#grid-placement-span-int // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. size_t column_span = 1; size_t row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1; if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-column: span 2 / 1 if (column_start < 0) column_start = 0; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position() && column_end == 0) column_start = 0; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://www.w3.org/TR/css-grid-2/#common-uses-named-lines // 8.1.3. Named Lines and Spans // Instead of counting lines by number, lines can be referenced by their line name: if (child_box.computed_values().grid_column_end().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_column_end().line_name()); maybe_grid_area.has_value()) column_end = maybe_grid_area->column_end; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_end().line_name(), grid_container().computed_values().grid_template_columns()); line_name_index > -1) column_end = line_name_index; else column_end = 1; column_start = column_end - 1; } if (child_box.computed_values().grid_column_start().has_line_name()) { if (auto maybe_grid_area = m_grid_areas.get(child_box.computed_values().grid_column_end().line_name()); maybe_grid_area.has_value()) column_start = maybe_grid_area->column_start; else if (auto line_name_index = get_line_index_by_line_name(child_box.computed_values().grid_column_start().line_name(), grid_container().computed_values().grid_template_columns()); line_name_index > -1) column_start = line_name_index; else column_start = 0; } // If there are multiple lines of the same name, they effectively establish a named set of grid // lines, which can be exclusively indexed by filtering the placement by name: // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. // 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is // less than the previous column position of the cursor, increment the row position by 1. if (column_start < auto_placement_cursor_x) auto_placement_cursor_y++; auto_placement_cursor_x = column_start; // 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not // overlap any occupied grid cells (creating new rows in the implicit grid as necessary). while (true) { if (!m_occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) { break; } auto_placement_cursor_y++; } // 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end // line according to its span from that position. m_occupation_grid.set_occupied(column_start, column_start + column_span, auto_placement_cursor_y, auto_placement_cursor_y + row_span); m_grid_items.append(GridItem { .box = child_box, .row = auto_placement_cursor_y, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::place_item_with_no_declared_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y) { // 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid // area does not overlap any occupied grid cells, or the cursor's column position, plus the item's // column span, overflow the number of columns in the implicit grid, as determined earlier in this // algorithm. auto column_start = 0; size_t column_span = 1; if (child_box.computed_values().grid_column_start().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); else if (child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); auto row_start = 0; size_t row_span = 1; if (child_box.computed_values().grid_row_start().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); else if (child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); auto found_unoccupied_area = false; while (true) { while (auto_placement_cursor_x <= m_occupation_grid.max_column_index()) { if (auto_placement_cursor_x + static_cast(column_span) <= m_occupation_grid.max_column_index() + 1) { auto found_all_available = true; for (size_t span_index = 0; span_index < column_span; span_index++) { if (m_occupation_grid.is_occupied(auto_placement_cursor_x + span_index, auto_placement_cursor_y)) found_all_available = false; } if (found_all_available) { found_unoccupied_area = true; column_start = auto_placement_cursor_x; row_start = auto_placement_cursor_y; break; } } auto_placement_cursor_x++; } if (found_unoccupied_area) { break; } // 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start // and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's // row position (creating new rows in the implicit grid as necessary), set its column position to the // start-most column line in the implicit grid, and return to the previous step. if (!found_unoccupied_area) { auto_placement_cursor_x = m_occupation_grid.min_column_index(); auto_placement_cursor_y++; row_start = auto_placement_cursor_y; } } m_occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); m_grid_items.append(GridItem { .box = child_box, .row = row_start, .row_span = row_span, .column = column_start, .column_span = column_span }); } void GridFormattingContext::initialize_grid_tracks_from_definition(AvailableSpace const& available_space, Vector const& tracks_definition, Vector& tracks) { auto track_count = get_count_of_tracks(tracks_definition, available_space); for (auto const& track_definition : tracks_definition) { auto repeat_count = (track_definition.is_repeat() && track_definition.repeat().is_default()) ? track_definition.repeat().repeat_count() : 1; if (track_definition.is_repeat()) { if (track_definition.repeat().is_auto_fill() || track_definition.repeat().is_auto_fit()) repeat_count = track_count; } for (auto _ = 0; _ < repeat_count; _++) { switch (track_definition.type()) { case CSS::ExplicitGridTrack::Type::Default: case CSS::ExplicitGridTrack::Type::MinMax: tracks.append(GridTrack::create_from_definition(track_definition)); break; case CSS::ExplicitGridTrack::Type::Repeat: for (auto& explicit_grid_track : track_definition.repeat().grid_track_size_list().track_list()) { tracks.append(GridTrack::create_from_definition(explicit_grid_track)); } break; default: VERIFY_NOT_REACHED(); } } } } void GridFormattingContext::initialize_grid_tracks_for_columns_and_rows(AvailableSpace const& available_space) { auto const& grid_computed_values = grid_container().computed_values(); auto const& grid_auto_columns = grid_computed_values.grid_auto_columns().track_list(); size_t implicit_column_index = 0; // NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks auto negative_index_implied_column_tracks_count = abs(m_occupation_grid.min_column_index()); for (int column_index = 0; column_index < negative_index_implied_column_tracks_count; column_index++) { if (grid_auto_columns.size() > 0) { auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()]; m_grid_columns.append(GridTrack::create_from_definition(definition)); } else { m_grid_columns.append(GridTrack::create_auto()); } implicit_column_index++; } initialize_grid_tracks_from_definition(available_space, grid_computed_values.grid_template_columns().track_list(), m_grid_columns); for (size_t column_index = m_grid_columns.size(); column_index < m_occupation_grid.column_count(); column_index++) { if (grid_auto_columns.size() > 0) { auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()]; m_grid_columns.append(GridTrack::create_from_definition(definition)); } else { m_grid_columns.append(GridTrack::create_auto()); } implicit_column_index++; } auto const& grid_auto_rows = grid_computed_values.grid_auto_rows().track_list(); size_t implicit_row_index = 0; // NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks auto negative_index_implied_row_tracks_count = abs(m_occupation_grid.min_row_index()); for (int row_index = 0; row_index < negative_index_implied_row_tracks_count; row_index++) { if (grid_auto_rows.size() > 0) { auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()]; m_grid_rows.append(GridTrack::create_from_definition(definition)); } else { m_grid_rows.append(GridTrack::create_auto()); } implicit_row_index++; } initialize_grid_tracks_from_definition(available_space, grid_computed_values.grid_template_rows().track_list(), m_grid_rows); for (size_t row_index = m_grid_rows.size(); row_index < m_occupation_grid.row_count(); row_index++) { if (grid_auto_rows.size() > 0) { auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()]; m_grid_rows.append(GridTrack::create_from_definition(definition)); } else { m_grid_rows.append(GridTrack::create_auto()); } implicit_row_index++; } } void GridFormattingContext::initialize_gap_tracks(AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-2/#gutters // 11.1. Gutters: the row-gap, column-gap, and gap properties // For the purpose of track sizing, each gutter is treated as an extra, empty, fixed-size track of // the specified size, which is spanned by any grid items that span across its corresponding grid // line. if (!grid_container().computed_values().column_gap().is_auto() && m_grid_columns.size() > 0) { auto column_gap_width = grid_container().computed_values().column_gap().to_px(grid_container(), available_space.width.to_px()); m_column_gap_tracks.ensure_capacity(m_grid_columns.size() - 1); for (size_t column_index = 0; column_index < m_grid_columns.size(); column_index++) { m_grid_columns_and_gaps.append(m_grid_columns[column_index]); if (column_index != m_grid_columns.size() - 1) { m_column_gap_tracks.append(GridTrack::create_gap(column_gap_width)); m_grid_columns_and_gaps.append(m_column_gap_tracks.last()); } } } else { for (auto& track : m_grid_columns) { m_grid_columns_and_gaps.append(track); } } if (!grid_container().computed_values().row_gap().is_auto() && m_grid_rows.size() > 0) { auto row_gap_height = grid_container().computed_values().row_gap().to_px(grid_container(), available_space.height.to_px()); m_row_gap_tracks.ensure_capacity(m_grid_rows.size() - 1); for (size_t row_index = 0; row_index < m_grid_rows.size(); row_index++) { m_grid_rows_and_gaps.append(m_grid_rows[row_index]); if (row_index != m_grid_rows.size() - 1) { m_row_gap_tracks.append(GridTrack::create_gap(row_gap_height)); m_grid_rows_and_gaps.append(m_row_gap_tracks.last()); } } } else { for (auto& track : m_grid_rows) { m_grid_rows_and_gaps.append(track); } } } void GridFormattingContext::initialize_track_sizes(AvailableSpace const& available_space, GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-init // 12.4. Initialize Track Sizes // Initialize each track’s base size and growth limit. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; for (auto& track : tracks_and_gaps) { if (track.is_gap) continue; if (track.min_track_sizing_function.is_fixed(available_size)) { track.base_size = track.min_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px()); } else if (track.min_track_sizing_function.is_intrinsic(available_size)) { track.base_size = 0; } if (track.max_track_sizing_function.is_fixed(available_size)) { track.growth_limit = track.max_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px()); } else if (track.max_track_sizing_function.is_flexible_length()) { track.growth_limit = {}; } else if (track.max_track_sizing_function.is_intrinsic(available_size)) { track.growth_limit = {}; } else { VERIFY_NOT_REACHED(); } // In all cases, if the growth limit is less than the base size, increase the growth limit to match // the base size. if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } } void GridFormattingContext::resolve_intrinsic_track_sizes(AvailableSpace const& available_space, GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-content // 12.5. Resolve Intrinsic Track Sizes // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those // sizes based on items that are contained wholly within a single track. Then it gradually adds in // the space requirements of items that span multiple tracks, evenly distributing the extra space // across those tracks insofar as possible. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment. // 2. Size tracks to fit non-spanning items: increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(available_space, dimension, 1); // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the // items with a span of 2 that do not span a track with a flexible sizing function. // Repeat incrementally for items with greater spans until all items have been considered. size_t max_item_span = 1; for (auto& item : m_grid_items) max_item_span = max(item.span(dimension), max_item_span); for (size_t span = 2; span <= max_item_span; span++) increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(available_space, dimension, span); // 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous // step instead considering (together, rather than grouped by span size) all items that do span a // track with a flexible sizing function while increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(dimension); // 5. If any track still has an infinite growth limit (because, for example, it had no items placed in // it or it is a flexible track), set its growth limit to its base size. for (auto& track : tracks_and_gaps) { if (!track.growth_limit.has_value()) track.growth_limit = track.base_size; } } template void GridFormattingContext::distribute_extra_space_across_spanned_tracks_base_size(GridDimension dimension, CSSPixels item_size_contribution, SpaceDistributionPhase phase, Vector& spanned_tracks, Match matcher) { auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; Vector affected_tracks; for (auto& track : spanned_tracks) { if (matcher(track)) affected_tracks.append(track); } if (affected_tracks.size() == 0) return; for (auto& track : affected_tracks) track.item_incurred_increase = 0; // 1. Find the space to distribute: CSSPixels spanned_tracks_sizes_sum = 0; for (auto& track : spanned_tracks) spanned_tracks_sizes_sum += track.base_size; // Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s // remaining size contribution. auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum); // 2. Distribute space up to limits: while (true) { auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.base_size_frozen; }); if (all_frozen) break; // Find the item-incurred increase for each spanned track with an affected size by: distributing the space // equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred // increase reaches its limit CSSPixels increase_per_track = extra_space / affected_tracks.size(); if (increase_per_track == 0) break; for (auto& track : affected_tracks) { if (track.base_size_frozen) continue; if (track.growth_limit.has_value() && increase_per_track >= track.growth_limit.value()) { track.base_size_frozen = true; track.item_incurred_increase = track.growth_limit.value(); extra_space -= track.growth_limit.value(); } else { track.item_incurred_increase += increase_per_track; extra_space -= increase_per_track; } } } // 3. Distribute space beyond limits if (extra_space > 0) { Vector tracks_to_grow_beyond_limits; // If space remains after all tracks are frozen, unfreeze and continue to // distribute space to the item-incurred increase of... if (phase == SpaceDistributionPhase::AccommodateMinimumContribution || phase == SpaceDistributionPhase::AccommodateMinContentContribution) { // when accommodating minimum contributions or accommodating min-content contributions: any affected track // that happens to also have an intrinsic max track sizing function for (auto& track : affected_tracks) { if (track.max_track_sizing_function.is_intrinsic(available_size)) tracks_to_grow_beyond_limits.append(track); } // if there are no such tracks, then all affected tracks. if (tracks_to_grow_beyond_limits.size() == 0) tracks_to_grow_beyond_limits = affected_tracks; } // FIXME: when accommodating max-content contributions: any affected track that happens to also have a // max-content max track sizing function; if there are no such tracks, then all affected tracks. CSSPixels increase_per_track = extra_space / affected_tracks.size(); for (auto& track : affected_tracks) track.item_incurred_increase += increase_per_track; } // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase // set the track’s planned increase to that value. for (auto& track : affected_tracks) { if (track.item_incurred_increase > track.planned_increase) track.planned_increase = track.item_incurred_increase; } } template void GridFormattingContext::distribute_extra_space_across_spanned_tracks_growth_limit(CSSPixels item_size_contribution, Vector& spanned_tracks, Match matcher) { Vector affected_tracks; for (auto& track : spanned_tracks) { if (matcher(track)) affected_tracks.append(track); } for (auto& track : affected_tracks) track.item_incurred_increase = 0; if (affected_tracks.size() == 0) return; // 1. Find the space to distribute: CSSPixels spanned_tracks_sizes_sum = 0; for (auto& track : spanned_tracks) { if (track.growth_limit.has_value()) { spanned_tracks_sizes_sum += track.growth_limit.value(); } else { spanned_tracks_sizes_sum += track.base_size; } } // Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s // remaining size contribution. auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum); // 2. Distribute space up to limits: while (true) { auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.growth_limit_frozen; }); if (all_frozen) break; // Find the item-incurred increase for each spanned track with an affected size by: distributing the space // equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred // increase reaches its limit CSSPixels increase_per_track = extra_space / affected_tracks.size(); if (increase_per_track == 0) break; for (auto& track : affected_tracks) { if (track.growth_limit_frozen) continue; // For growth limits, the limit is infinity if it is marked as infinitely growable, and equal to the // growth limit otherwise. if (track.infinitely_growable || !track.growth_limit.has_value()) { track.item_incurred_increase += increase_per_track; extra_space -= increase_per_track; } else if (track.growth_limit.has_value() && increase_per_track >= track.growth_limit.value()) { track.growth_limit_frozen = true; track.item_incurred_increase = track.growth_limit.value(); extra_space -= track.growth_limit.value(); } } } // FIXME: 3. Distribute space beyond limits // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase // set the track’s planned increase to that value. for (auto& track : spanned_tracks) { if (track.item_incurred_increase > track.planned_increase) track.planned_increase = track.item_incurred_increase; } } void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(AvailableSpace const& available_space, GridDimension const dimension, size_t span) { auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; for (auto& item : m_grid_items) { auto const item_span = item.span(dimension); if (item_span != span) continue; Vector spanned_tracks; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); }); auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) { return track.min_track_sizing_function.is_flexible_length() || track.max_track_sizing_function.is_flexible_length(); }); if (item_spans_tracks_with_flexible_sizing_function) continue; // 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. auto item_size_contribution = [&] { // If the grid container is being sized under a min- or max-content constraint, use the items’ limited // min-content contributions in place of their minimum contributions here. if (available_size.is_intrinsic_sizing_constraint()) return calculate_limited_min_content_contribution(item, dimension); return calculate_minimum_contribution(item, dimension); }(); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_size_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_intrinsic(available_size); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 2. For content-based minimums: Next continue to increase the base size of tracks with a min track // sizing function of min-content or max-content by distributing extra space as needed to account for // these items' min-content contributions. auto item_min_content_contribution = calculate_min_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_min_content_contribution, SpaceDistributionPhase::AccommodateMinContentContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_min_content() || track.min_track_sizing_function.is_max_content(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 3. For max-content minimums: Next, if the grid container is being sized under a max-content constraint, // continue to increase the base size of tracks with a min track sizing function of auto or max-content by // distributing extra space as needed to account for these items' limited max-content contributions. if (available_size.is_max_content()) { auto item_limited_max_content_contribution = calculate_limited_max_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_limited_max_content_contribution, SpaceDistributionPhase::AccommodateMaxContentContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_auto(available_size) || track.min_track_sizing_function.is_max_content(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } } // 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to // match its base size. for (auto& track : tracks) { if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } // 5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track sizing distribute_extra_space_across_spanned_tracks_growth_limit(item_min_content_contribution, spanned_tracks, [&](GridTrack const& track) { return track.max_track_sizing_function.is_intrinsic(available_size); }); for (auto& track : spanned_tracks) { if (!track.growth_limit.has_value()) { // If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase. track.growth_limit = track.base_size + track.planned_increase; // Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable // for the next step. track.infinitely_growable = true; } else { track.growth_limit.value() += track.planned_increase; } track.planned_increase = 0; } // 6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track // sizing function of max-content by distributing extra space as needed to account for these items' max- // content contributions. auto item_max_content_contribution = calculate_max_content_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_growth_limit(item_max_content_contribution, spanned_tracks, [&](GridTrack const& track) { return track.max_track_sizing_function.is_max_content() || track.max_track_sizing_function.is_auto(available_size); }); for (auto& track : spanned_tracks) { if (!track.growth_limit.has_value()) { // If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase. track.growth_limit = track.base_size + track.planned_increase; } else { track.growth_limit.value() += track.planned_increase; } track.planned_increase = 0; } } } void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(GridDimension const dimension) { auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; for (auto& item : m_grid_items) { Vector spanned_tracks; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); }); auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) { return track.min_track_sizing_function.is_flexible_length() || track.max_track_sizing_function.is_flexible_length(); }); if (!item_spans_tracks_with_flexible_sizing_function) continue; // 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing // function by distributing extra space as needed to accommodate these items’ minimum contributions. auto item_minimum_contribution = calculate_minimum_contribution(item, dimension); distribute_extra_space_across_spanned_tracks_base_size(dimension, item_minimum_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) { return track.min_track_sizing_function.is_flexible_length(); }); for (auto& track : spanned_tracks) { track.base_size += track.planned_increase; track.planned_increase = 0; } // 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to // match its base size. for (auto& track : tracks) { if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size) track.growth_limit = track.base_size; } } } void GridFormattingContext::maximize_tracks(AvailableSpace const& available_space, GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-grow-tracks // 12.6. Maximize Tracks auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto get_free_space_px = [&]() -> CSSPixels { // For the purpose of this step: if sizing the grid container under a max-content constraint, the // free space is infinite; if sizing under a min-content constraint, the free space is zero. auto free_space = get_free_space(available_space, dimension); if (free_space.is_max_content()) { return INFINITY; } else if (free_space.is_min_content()) { return 0; } else { return free_space.to_px(); } }; auto free_space_px = get_free_space_px(); // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed). while (free_space_px > 0) { auto free_space_to_distribute_per_track = free_space_px / tracks.size(); for (auto& track : tracks) { if (track.base_size_frozen) continue; VERIFY(track.growth_limit.has_value()); track.base_size = min(track.growth_limit.value(), track.base_size + free_space_to_distribute_per_track); } if (get_free_space_px() == free_space_px) break; free_space_px = get_free_space_px(); } // FIXME: If this would cause the grid to be larger than the grid container’s inner size as limited by its // max-width/height, then redo this step, treating the available grid space as equal to the grid // container’s inner size when it’s sized to its max-width/height. } void GridFormattingContext::expand_flexible_tracks(AvailableSpace const& available_space, GridDimension const dimension) { // https://drafts.csswg.org/css-grid/#algo-flex-tracks // 12.7. Expand Flexible Tracks // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding // the available space. auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; auto find_the_size_of_an_fr = [&](Vector tracks, CSSPixels space_to_fill) -> CSSPixels { // https://www.w3.org/TR/css-grid-2/#algo-find-fr-size // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. auto leftover_space = space_to_fill; for (auto& track : tracks) { if (!track.max_track_sizing_function.is_flexible_length()) { leftover_space -= track.base_size; } } // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. // If this value is less than 1, set it to 1 instead. auto flex_factor_sum = 0; for (auto& track : tracks) { if (track.max_track_sizing_function.is_flexible_length()) flex_factor_sum += track.max_track_sizing_function.flex_factor(); } if (flex_factor_sum < 1) flex_factor_sum = 1; // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = leftover_space / flex_factor_sum; // FIXME: 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the track’s // base size, restart this algorithm treating all such tracks as inflexible. // 5. Return the hypothetical fr size. return hypothetical_fr_size; }; // First, find the grid’s used flex fraction: auto flex_fraction = [&]() { auto free_space = get_free_space(available_space, dimension); // If the free space is zero or if sizing the grid container under a min-content constraint: if (free_space.to_px() == 0 || available_size.is_min_content()) { // The used flex fraction is zero. return CSSPixels(0); // Otherwise, if the free space is a definite length: } else if (free_space.is_definite()) { // The used flex fraction is the result of finding the size of an fr using all of the grid tracks and a space // to fill of the available grid space. return find_the_size_of_an_fr(tracks_and_gaps, available_size.to_px()); } else { // Otherwise, if the free space is an indefinite length: // The used flex fraction is the maximum of: CSSPixels result = 0; // For each flexible track, if the flexible track’s flex factor is greater than one, the result of dividing // the track’s base size by its flex factor; otherwise, the track’s base size. for (auto& track : tracks) { if (track.max_track_sizing_function.is_flexible_length()) { if (track.max_track_sizing_function.flex_factor() > 1) { result = max(result, track.base_size / track.max_track_sizing_function.flex_factor()); } else { result = max(result, track.base_size); } } } // For each grid item that crosses a flexible track, the result of finding the size of an fr using all the // grid tracks that the item crosses and a space to fill of the item’s max-content contribution. for (auto& item : m_grid_items) { Vector spanned_tracks; bool crosses_flexible_track = false; for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) { spanned_tracks.append(track); if (track.max_track_sizing_function.is_flexible_length()) crosses_flexible_track = true; }); if (crosses_flexible_track) result = max(result, find_the_size_of_an_fr(spanned_tracks, calculate_max_content_size(item, dimension))); } return result; } }(); // For each flexible track, if the product of the used flex fraction and the track’s flex factor is greater than // the track’s base size, set its base size to that product. for (auto& track : tracks_and_gaps) { if (track.max_track_sizing_function.flex_factor() * flex_fraction > track.base_size) { track.base_size = track.max_track_sizing_function.flex_factor() * flex_fraction; } } } void GridFormattingContext::stretch_auto_tracks(AvailableSpace const& available_space, GridDimension const dimension) { // https://drafts.csswg.org/css-grid/#algo-stretch // 12.8. Stretch auto Tracks auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; // When the content-distribution property of the grid container is normal or stretch in this axis, // this step expands tracks that have an auto max track sizing function by dividing any remaining // positive, definite free space equally amongst them. If the free space is indefinite, but the grid // container has a definite min-width/height, use that size to calculate the free space for this // step instead. CSSPixels used_space = 0; for (auto& track : tracks_and_gaps) { if (!track.max_track_sizing_function.is_auto(available_size)) used_space += track.base_size; } CSSPixels remaining_space = available_size.is_definite() ? available_size.to_px() - used_space : 0; auto count_of_auto_max_sizing_tracks = 0; for (auto& track : tracks_and_gaps) { if (track.max_track_sizing_function.is_auto(available_size)) count_of_auto_max_sizing_tracks++; } for (auto& track : tracks_and_gaps) { if (track.max_track_sizing_function.is_auto(available_size)) track.base_size = max(track.base_size, remaining_space / count_of_auto_max_sizing_tracks); } } void GridFormattingContext::run_track_sizing(AvailableSpace const& available_space, GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#algo-track-sizing // 12.3. Track Sizing Algorithm // 1. Initialize Track Sizes initialize_track_sizes(available_space, dimension); // 2. Resolve Intrinsic Track Sizes resolve_intrinsic_track_sizes(available_space, dimension); // 3. Maximize Tracks maximize_tracks(available_space, dimension); // 4. Expand Flexible Tracks expand_flexible_tracks(available_space, dimension); // 5. Expand Stretched auto Tracks stretch_auto_tracks(available_space, dimension); // If calculating the layout of a grid item in this step depends on the available space in the block // axis, assume the available space that it would have if any row with a definite max track sizing // function had that size and all other rows were infinite. If both the grid container and all // tracks have definite sizes, also apply align-content to find the final effective size of any gaps // spanned by such items; otherwise ignore the effects of track alignment in this estimation. } void GridFormattingContext::build_grid_areas() { // https://www.w3.org/TR/css-grid-2/#grid-template-areas-property // If a named grid area spans multiple grid cells, but those cells do not form a single // filled-in rectangle, the declaration is invalid. for (size_t y = 0; y < grid_container().computed_values().grid_template_areas().size(); y++) { for (size_t x = 0; x < grid_container().computed_values().grid_template_areas()[y].size(); x++) { auto grid_area_name = grid_container().computed_values().grid_template_areas()[y][x]; auto maybe_grid_area = m_grid_areas.get(grid_area_name); if (!maybe_grid_area.has_value()) { m_grid_areas.set(grid_area_name, { grid_area_name, y, y + 1, x, x + 1 }); } else { auto& grid_area = maybe_grid_area.value(); if (grid_area.row_start == y) { if (grid_area.column_end == x) grid_area.column_end = grid_area.column_end + 1; else return; } else { if (grid_area.row_end == y) { if (grid_area.column_start != x) return; grid_area.row_end = grid_area.row_end + 1; } else if (grid_area.row_end == y + 1) { if (grid_area.column_end < x || grid_area.column_end > x + 1) return; } else { return; } } } } } } void GridFormattingContext::place_grid_items(AvailableSpace const& available_space) { auto grid_template_columns = grid_container().computed_values().grid_template_columns(); auto grid_template_rows = grid_container().computed_values().grid_template_rows(); auto column_count = get_count_of_tracks(grid_template_columns.track_list(), available_space); auto row_count = get_count_of_tracks(grid_template_rows.track_list(), available_space); // https://drafts.csswg.org/css-grid/#overview-placement // 2.2. Placing Items // The contents of the grid container are organized into individual grid items (analogous to // flex items), which are then assigned to predefined areas in the grid. They can be explicitly // placed using coordinates through the grid-placement properties or implicitly placed into // empty areas using auto-placement. Vector> boxes_to_place; grid_container().for_each_child_of_type([&](Box& child_box) { if (can_skip_is_anonymous_text_run(child_box)) return IterationDecision::Continue; if (child_box.is_out_of_flow(*this)) return IterationDecision::Continue; boxes_to_place.append(child_box); return IterationDecision::Continue; }); m_occupation_grid = OccupationGrid(column_count, row_count); build_grid_areas(); // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm // FIXME: 0. Generate anonymous grid items // 1. Position anything that's not auto-positioned. for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; if (is_auto_positioned_row(child_box->computed_values().grid_row_start(), child_box->computed_values().grid_row_end()) || is_auto_positioned_column(child_box->computed_values().grid_column_start(), child_box->computed_values().grid_column_end())) continue; place_item_with_row_and_column_position(child_box); boxes_to_place.remove(i); i--; } // 2. Process the items locked to a given row. // FIXME: Do "dense" packing for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; if (is_auto_positioned_row(child_box->computed_values().grid_row_start(), child_box->computed_values().grid_row_end())) continue; place_item_with_row_position(child_box); boxes_to_place.remove(i); i--; } // 3. Determine the columns in the implicit grid. // NOTE: "implicit grid" here is the same as the m_occupation_grid // 3.1. Start with the columns from the explicit grid. // NOTE: Done in step 1. // 3.2. Among all the items with a definite column position (explicitly positioned items, items // positioned in the previous step, and items not yet positioned but with a definite column) add // columns to the beginning and end of the implicit grid as necessary to accommodate those items. // NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1 // and 2, respectively. Adding columns for "items not yet positioned but with a definite column" // will be done in step 4. // 3.3. If the largest column span among all the items without a definite column position is larger // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate // that column span. for (auto const& child_box : boxes_to_place) { int column_span = 1; if (child_box->computed_values().grid_column_start().is_span()) column_span = child_box->computed_values().grid_column_start().raw_value(); else if (child_box->computed_values().grid_column_end().is_span()) column_span = child_box->computed_values().grid_column_end().raw_value(); if (column_span - 1 > m_occupation_grid.max_column_index()) m_occupation_grid.set_max_column_index(column_span - 1); } // 4. Position the remaining grid items. // For each grid item that hasn't been positioned by the previous steps, in order-modified document // order: auto auto_placement_cursor_x = 0; auto auto_placement_cursor_y = 0; for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; // 4.1. For sparse packing: // FIXME: no distinction made. See #4.2 // 4.1.1. If the item has a definite column position: if (!is_auto_positioned_column(child_box->computed_values().grid_column_start(), child_box->computed_values().grid_column_end())) place_item_with_column_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y); // 4.1.2. If the item has an automatic grid position in both axes: else place_item_with_no_declared_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y); boxes_to_place.remove(i); i--; // FIXME: 4.2. For dense packing: } // NOTE: When final implicit grid sizes are known, we can offset their positions so leftmost grid track has 0 index. for (auto& item : m_grid_items) { item.row = item.row - m_occupation_grid.min_row_index(); item.column = item.column - m_occupation_grid.min_column_index(); } } void GridFormattingContext::determine_grid_container_height() { CSSPixels total_y = 0; for (auto& grid_row : m_grid_rows_and_gaps) total_y += grid_row.base_size; m_automatic_content_height = total_y; } CSS::JustifyItems GridFormattingContext::justification_for_item(Box const& box) const { switch (box.computed_values().justify_self()) { case CSS::JustifySelf::Auto: return grid_container().computed_values().justify_items(); case CSS::JustifySelf::End: return CSS::JustifyItems::End; case CSS::JustifySelf::Normal: return CSS::JustifyItems::Normal; case CSS::JustifySelf::SelfStart: return CSS::JustifyItems::SelfStart; case CSS::JustifySelf::SelfEnd: return CSS::JustifyItems::SelfEnd; case CSS::JustifySelf::FlexStart: return CSS::JustifyItems::FlexStart; case CSS::JustifySelf::FlexEnd: return CSS::JustifyItems::FlexEnd; case CSS::JustifySelf::Center: return CSS::JustifyItems::Center; case CSS::JustifySelf::Baseline: return CSS::JustifyItems::Baseline; case CSS::JustifySelf::Start: return CSS::JustifyItems::Start; case CSS::JustifySelf::Stretch: return CSS::JustifyItems::Stretch; case CSS::JustifySelf::Safe: return CSS::JustifyItems::Safe; case CSS::JustifySelf::Unsafe: return CSS::JustifyItems::Unsafe; default: VERIFY_NOT_REACHED(); } } CSS::AlignItems GridFormattingContext::alignment_for_item(Box const& box) const { switch (box.computed_values().align_self()) { case CSS::AlignSelf::Auto: return grid_container().computed_values().align_items(); case CSS::AlignSelf::End: return CSS::AlignItems::End; case CSS::AlignSelf::Normal: return CSS::AlignItems::Normal; case CSS::AlignSelf::SelfStart: return CSS::AlignItems::SelfStart; case CSS::AlignSelf::SelfEnd: return CSS::AlignItems::SelfEnd; case CSS::AlignSelf::FlexStart: return CSS::AlignItems::FlexStart; case CSS::AlignSelf::FlexEnd: return CSS::AlignItems::FlexEnd; case CSS::AlignSelf::Center: return CSS::AlignItems::Center; case CSS::AlignSelf::Baseline: return CSS::AlignItems::Baseline; case CSS::AlignSelf::Start: return CSS::AlignItems::Start; case CSS::AlignSelf::Stretch: return CSS::AlignItems::Stretch; case CSS::AlignSelf::Safe: return CSS::AlignItems::Safe; case CSS::AlignSelf::Unsafe: return CSS::AlignItems::Unsafe; default: VERIFY_NOT_REACHED(); } } void GridFormattingContext::resolve_grid_item_widths() { for (auto& item : m_grid_items) { CSSPixels containing_block_width = containing_block_size_for_item(item, GridDimension::Column); auto& box_state = m_state.get_mutable(item.box); auto const& computed_values = item.box->computed_values(); auto const& computed_width = computed_values.width(); auto try_compute_width = [&](CSSPixels a_width) { CSSPixels width = a_width; // Auto margins absorb positive free space prior to alignment via the box alignment properties. auto free_space_left_for_margins = containing_block_width - width - box_state.border_left - box_state.border_right - box_state.padding_left - box_state.padding_right - box_state.margin_left - box_state.margin_right; if (computed_values.margin().left().is_auto() && computed_values.margin().right().is_auto()) { box_state.margin_left = free_space_left_for_margins / 2; box_state.margin_right = free_space_left_for_margins / 2; } else if (computed_values.margin().left().is_auto()) { box_state.margin_left = free_space_left_for_margins; } else if (computed_values.margin().right().is_auto()) { box_state.margin_right = free_space_left_for_margins; } else if (computed_values.width().is_auto()) { width += free_space_left_for_margins; } auto free_space_left_for_alignment = containing_block_width - a_width - box_state.border_left - box_state.border_right - box_state.padding_left - box_state.padding_right - box_state.margin_left - box_state.margin_right; switch (justification_for_item(item.box)) { case CSS::JustifyItems::Normal: case CSS::JustifyItems::Stretch: return width; case CSS::JustifyItems::Center: box_state.margin_left += free_space_left_for_alignment / 2; box_state.margin_right += free_space_left_for_alignment / 2; return a_width; case CSS::JustifyItems::Start: case CSS::JustifyItems::FlexStart: box_state.margin_right += free_space_left_for_alignment; return a_width; case CSS::JustifyItems::End: case CSS::JustifyItems::FlexEnd: box_state.margin_left += free_space_left_for_alignment; return a_width; default: break; } return width; }; CSSPixels used_width; if (computed_width.is_auto()) { used_width = try_compute_width(calculate_fit_content_width(item.box, get_available_space_for_item(item))); } else if (computed_width.is_fit_content()) { used_width = try_compute_width(calculate_fit_content_width(item.box, get_available_space_for_item(item))); } else { used_width = try_compute_width(computed_width.to_px(grid_container(), containing_block_width)); } box_state.set_content_width(used_width); } } void GridFormattingContext::resolve_grid_item_heights() { for (auto& item : m_grid_items) { CSSPixels containing_block_height = containing_block_size_for_item(item, GridDimension::Row); auto& box_state = m_state.get_mutable(item.box); auto const& computed_values = item.box->computed_values(); auto const& computed_height = computed_values.height(); auto try_compute_height = [&](CSSPixels a_height) { CSSPixels height = a_height; auto underflow_px = containing_block_height - height - box_state.border_top - box_state.border_bottom - box_state.padding_top - box_state.padding_bottom - box_state.margin_top - box_state.margin_bottom; if (computed_values.margin().top().is_auto() && computed_values.margin().bottom().is_auto()) { auto half_of_the_underflow = underflow_px / 2; box_state.margin_top = half_of_the_underflow; box_state.margin_bottom = half_of_the_underflow; } else if (computed_values.margin().top().is_auto()) { box_state.margin_top = underflow_px; } else if (computed_values.margin().bottom().is_auto()) { box_state.margin_bottom = underflow_px; } else if (computed_values.height().is_auto()) { height += underflow_px; } switch (alignment_for_item(item.box)) { case CSS::AlignItems::Baseline: // FIXME: Not implemented case CSS::AlignItems::Stretch: case CSS::AlignItems::Normal: break; case CSS::AlignItems::Start: case CSS::AlignItems::FlexStart: case CSS::AlignItems::SelfStart: box_state.margin_bottom += underflow_px; return a_height; case CSS::AlignItems::End: case CSS::AlignItems::SelfEnd: case CSS::AlignItems::FlexEnd: box_state.margin_top += underflow_px; return a_height; case CSS::AlignItems::Center: box_state.margin_top += underflow_px / 2; box_state.margin_bottom += underflow_px / 2; return a_height; default: break; } return height; }; CSSPixels used_height; if (computed_height.is_auto()) { used_height = try_compute_height(calculate_fit_content_height(item.box, get_available_space_for_item(item))); } else if (computed_height.is_fit_content()) { used_height = try_compute_height(calculate_fit_content_height(item.box, get_available_space_for_item(item))); } else { used_height = try_compute_height(computed_height.to_px(grid_container(), containing_block_height)); } box_state.set_content_height(used_height); } } void GridFormattingContext::resolve_items_box_metrics(GridDimension const dimension) { for (auto& item : m_grid_items) { auto& box_state = m_state.get_mutable(item.box); auto& computed_values = item.box->computed_values(); if (dimension == GridDimension::Column) { CSSPixels containing_block_width = containing_block_size_for_item(item, GridDimension::Column); box_state.padding_right = computed_values.padding().right().to_px(grid_container(), containing_block_width); box_state.padding_left = computed_values.padding().left().to_px(grid_container(), containing_block_width); box_state.margin_right = computed_values.margin().right().to_px(grid_container(), containing_block_width); box_state.margin_left = computed_values.margin().left().to_px(grid_container(), containing_block_width); box_state.border_right = computed_values.border_right().width; box_state.border_left = computed_values.border_left().width; } else { CSSPixels containing_block_height = containing_block_size_for_item(item, GridDimension::Row); box_state.padding_top = computed_values.padding().top().to_px(grid_container(), containing_block_height); box_state.padding_bottom = computed_values.padding().bottom().to_px(grid_container(), containing_block_height); box_state.margin_top = computed_values.margin().top().to_px(grid_container(), containing_block_height); box_state.margin_bottom = computed_values.margin().bottom().to_px(grid_container(), containing_block_height); box_state.border_top = computed_values.border_top().width; box_state.border_bottom = computed_values.border_bottom().width; } } } void GridFormattingContext::collapse_auto_fit_tracks_if_needed(GridDimension const dimension) { // https://www.w3.org/TR/css-grid-2/#auto-repeat // The auto-fit keyword behaves the same as auto-fill, except that after grid item placement any // empty repeated tracks are collapsed. An empty track is one with no in-flow grid items placed into // or spanning across it. (This can result in all tracks being collapsed, if they’re all empty.) auto const& grid_computed_values = grid_container().computed_values(); auto const& tracks_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns().track_list() : grid_computed_values.grid_template_rows().track_list(); auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; if (tracks_definition.size() == 1 && tracks_definition.first().is_repeat() && tracks_definition.first().repeat().is_auto_fit()) { for (size_t track_index = 0; track_index < tracks.size(); track_index++) { if (m_occupation_grid.is_occupied(dimension == GridDimension::Column ? track_index : 0, dimension == GridDimension::Row ? track_index : 0)) continue; // NOTE: A collapsed track is treated as having a fixed track sizing function of 0px tracks[track_index].min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0)); tracks[track_index].max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0)); } } } void GridFormattingContext::run(Box const& box, LayoutMode, AvailableSpace const& available_space) { m_available_space = available_space; auto const& grid_computed_values = grid_container().computed_values(); // NOTE: We store explicit grid sizes to later use in determining the position of items with negative index. m_explicit_columns_line_count = get_count_of_tracks(grid_computed_values.grid_template_columns().track_list(), available_space) + 1; m_explicit_rows_line_count = get_count_of_tracks(grid_computed_values.grid_template_rows().track_list(), available_space) + 1; place_grid_items(available_space); initialize_grid_tracks_for_columns_and_rows(available_space); initialize_gap_tracks(available_space); collapse_auto_fit_tracks_if_needed(GridDimension::Column); collapse_auto_fit_tracks_if_needed(GridDimension::Row); for (auto& item : m_grid_items) { auto& box_state = m_state.get_mutable(item.box); auto& computed_values = item.box->computed_values(); // NOTE: As the containing blocks of grid items are created by implicit grid areas that are not present in the // layout tree, the initial value of has_definite_width/height computed by LayoutState::UsedValues::set_node // will be incorrect for anything other (auto, percentage, calculated) than fixed lengths. // Therefor, it becomes necessary to reset this value to indefinite. // TODO: Handle this in LayoutState::UsedValues::set_node if (!computed_values.width().is_length()) box_state.set_indefinite_content_width(); if (!computed_values.height().is_length()) box_state.set_indefinite_content_height(); } // Do the first pass of resolving grid items box metrics to compute values that are independent of a track width resolve_items_box_metrics(GridDimension::Column); run_track_sizing(available_space, GridDimension::Column); // Do the second pass of resolving box metrics to compute values that depend on a track width resolve_items_box_metrics(GridDimension::Column); // Once the sizes of column tracks, which determine the widths of the grid areas forming the containing blocks // for grid items, ara calculated, it becomes possible to determine the final widths of the grid items. resolve_grid_item_widths(); // Do the first pass of resolving grid items box metrics to compute values that are independent of a track height resolve_items_box_metrics(GridDimension::Row); run_track_sizing(available_space, GridDimension::Row); // Do the second pass of resolving box metrics to compute values that depend on a track height resolve_items_box_metrics(GridDimension::Row); resolve_grid_item_heights(); determine_grid_container_height(); if (available_space.height.is_intrinsic_sizing_constraint() || available_space.width.is_intrinsic_sizing_constraint()) { determine_intrinsic_size_of_grid_container(available_space); return; } auto layout_box = [&](int row_start, int row_end, int column_start, int column_end, Box const& child_box) -> void { if (column_start < 0 || row_start < 0) return; auto& child_box_state = m_state.get_mutable(child_box); CSSPixels x_start = 0; CSSPixels x_end = 0; CSSPixels y_start = 0; CSSPixels y_end = 0; for (int i = 0; i < column_start; i++) x_start += m_grid_columns_and_gaps[i].base_size; for (int i = 0; i < column_end; i++) x_end += m_grid_columns_and_gaps[i].base_size; for (int i = 0; i < row_start; i++) y_start += m_grid_rows_and_gaps[i].base_size; for (int i = 0; i < row_end; i++) { y_end += m_grid_rows_and_gaps[i].base_size; } child_box_state.offset = { x_start + child_box_state.border_left + child_box_state.padding_left + child_box_state.margin_left, y_start + child_box_state.border_top + child_box_state.padding_top + child_box_state.margin_top }; compute_inset(child_box); auto available_space_for_children = AvailableSpace(AvailableSize::make_definite(child_box_state.content_width()), AvailableSize::make_definite(child_box_state.content_height())); if (auto independent_formatting_context = layout_inside(child_box, LayoutMode::Normal, available_space_for_children)) independent_formatting_context->parent_context_did_dimension_child_root_box(); }; for (auto& grid_item : m_grid_items) { auto resolved_row_span = box.computed_values().row_gap().is_auto() ? grid_item.row_span : grid_item.row_span * 2; if (!box.computed_values().row_gap().is_auto() && grid_item.gap_adjusted_row(box) == 0) resolved_row_span -= 1; if (grid_item.gap_adjusted_row(box) + resolved_row_span > m_grid_rows.size()) resolved_row_span = m_grid_rows_and_gaps.size() - grid_item.gap_adjusted_row(box); auto resolved_column_span = box.computed_values().column_gap().is_auto() ? grid_item.column_span : grid_item.column_span * 2; if (!box.computed_values().column_gap().is_auto() && grid_item.gap_adjusted_column(box) == 0) resolved_column_span -= 1; if (grid_item.gap_adjusted_column(box) + resolved_column_span > m_grid_columns_and_gaps.size()) resolved_column_span = m_grid_columns_and_gaps.size() - grid_item.gap_adjusted_column(box); layout_box( grid_item.gap_adjusted_row(box), grid_item.gap_adjusted_row(box) + resolved_row_span, grid_item.gap_adjusted_column(box), grid_item.gap_adjusted_column(box) + resolved_column_span, grid_item.box); } } void GridFormattingContext::parent_context_did_dimension_child_root_box() { grid_container().for_each_child_of_type([&](Layout::Box& box) { if (box.is_absolutely_positioned()) { auto& cb_state = m_state.get(*box.containing_block()); auto available_width = AvailableSize::make_definite(cb_state.content_width() + cb_state.padding_left + cb_state.padding_right); auto available_height = AvailableSize::make_definite(cb_state.content_height() + cb_state.padding_top + cb_state.padding_bottom); layout_absolutely_positioned_element(box, AvailableSpace(available_width, available_height)); } }); } void GridFormattingContext::determine_intrinsic_size_of_grid_container(AvailableSpace const& available_space) { // https://www.w3.org/TR/css-grid-1/#intrinsic-sizes // The max-content size (min-content size) of a grid container is the sum of the grid container’s track sizes // (including gutters) in the appropriate axis, when the grid is sized under a max-content constraint (min-content constraint). if (available_space.height.is_intrinsic_sizing_constraint()) { CSSPixels grid_container_height = 0; for (auto& track : m_grid_rows) { grid_container_height += track.base_size; } m_state.get_mutable(grid_container()).set_content_height(grid_container_height); } if (available_space.width.is_intrinsic_sizing_constraint()) { CSSPixels grid_container_width = 0; for (auto& track : m_grid_columns) { grid_container_width += track.base_size; } m_state.get_mutable(grid_container()).set_content_width(grid_container_width); } } CSSPixels GridFormattingContext::automatic_content_width() const { return m_state.get(grid_container()).content_width(); } CSSPixels GridFormattingContext::automatic_content_height() const { return m_automatic_content_height; } bool GridFormattingContext::is_auto_positioned_row(CSS::GridTrackPlacement const& grid_row_start, CSS::GridTrackPlacement const& grid_row_end) const { return is_auto_positioned_track(grid_row_start, grid_row_end); } bool GridFormattingContext::is_auto_positioned_column(CSS::GridTrackPlacement const& grid_column_start, CSS::GridTrackPlacement const& grid_column_end) const { return is_auto_positioned_track(grid_column_start, grid_column_end); } bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const { return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned(); } AvailableSize GridFormattingContext::get_free_space(AvailableSpace const& available_space, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-2/#algo-terms // free space: Equal to the available grid space minus the sum of the base sizes of all the grid // tracks (including gutters), floored at zero. If available grid space is indefinite, the free // space is indefinite as well. auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height; auto& tracks = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps; if (available_size.is_definite()) { CSSPixels sum_base_sizes = 0; for (auto& track : tracks) sum_base_sizes += track.base_size; return AvailableSize::make_definite(max(CSSPixels(0), available_size.to_px() - sum_base_sizes)); } return available_size; } int GridFormattingContext::get_line_index_by_line_name(String const& needle, CSS::GridTrackSizeList grid_track_size_list) { if (grid_track_size_list.track_list().size() == 0) return -1; auto repeated_tracks_count = 0; for (size_t x = 0; x < grid_track_size_list.track_list().size(); x++) { if (grid_track_size_list.track_list()[x].is_repeat()) { // FIXME: Calculate amount of columns/rows if auto-fill/fit if (!grid_track_size_list.track_list()[x].repeat().is_default()) return -1; auto repeat = grid_track_size_list.track_list()[x].repeat().grid_track_size_list(); for (size_t y = 0; y < repeat.track_list().size(); y++) { for (size_t z = 0; z < repeat.line_names()[y].size(); z++) { if (repeat.line_names()[y][z] == needle) return x + repeated_tracks_count; repeated_tracks_count++; } } } else { for (size_t y = 0; y < grid_track_size_list.line_names()[x].size(); y++) { if (grid_track_size_list.line_names()[x][y] == needle) return x + repeated_tracks_count; } } } for (size_t y = 0; y < grid_track_size_list.line_names()[grid_track_size_list.track_list().size()].size(); y++) { if (grid_track_size_list.line_names()[grid_track_size_list.track_list().size()][y] == needle) return grid_track_size_list.track_list().size() + repeated_tracks_count; } return -1; } void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end) { for (int row_index = row_start; row_index < row_end; row_index++) { for (int column_index = column_start; column_index < column_end; column_index++) { m_min_column_index = min(m_min_column_index, column_index); m_max_column_index = max(m_max_column_index, column_index); m_min_row_index = min(m_min_row_index, row_index); m_max_row_index = max(m_max_row_index, row_index); m_occupation_grid.set(GridPosition { .row = row_index, .column = column_index }); } } } bool OccupationGrid::is_occupied(int column_index, int row_index) const { return m_occupation_grid.contains(GridPosition { row_index, column_index }); } int GridItem::gap_adjusted_row(Box const& grid_box) const { return grid_box.computed_values().row_gap().is_auto() ? row : row * 2; } int GridItem::gap_adjusted_column(Box const& grid_box) const { return grid_box.computed_values().column_gap().is_auto() ? column : column * 2; } CSS::Size const& GridFormattingContext::get_item_preferred_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) return item.box->computed_values().width(); return item.box->computed_values().height(); } CSSPixels GridFormattingContext::calculate_min_content_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) { return calculate_min_content_width(item.box); } else { return calculate_min_content_height(item.box, get_available_space_for_item(item).width); } } CSSPixels GridFormattingContext::calculate_max_content_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) { return calculate_max_content_width(item.box); } else { return calculate_max_content_height(item.box, get_available_space_for_item(item).width); } } CSSPixels GridFormattingContext::containing_block_size_for_item(GridItem const& item, GridDimension const dimension) const { CSSPixels containing_block_size = 0; for_each_spanned_track_by_item(item, dimension, [&](GridTrack const& track) { containing_block_size += track.base_size; }); return containing_block_size; } AvailableSpace GridFormattingContext::get_available_space_for_item(GridItem const& item) const { auto& item_box_state = m_state.get(item.box); AvailableSize available_width = item_box_state.has_definite_width() ? AvailableSize::make_definite(item_box_state.content_width()) : AvailableSize::make_indefinite(); AvailableSize available_height = item_box_state.has_definite_height() ? AvailableSize::make_definite(item_box_state.content_height()) : AvailableSize::make_indefinite(); return AvailableSpace(available_width, available_height); } CSSPixels GridFormattingContext::calculate_min_content_contribution(GridItem const& item, GridDimension const dimension) const { auto available_space_for_item = get_available_space_for_item(item); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, available_space_for_item); return should_treat_height_as_auto(item.box, available_space_for_item); }(); if (should_treat_preferred_size_as_auto) { return item.add_margin_box_sizes(calculate_min_content_size(item, dimension), dimension, m_state); } auto preferred_size = get_item_preferred_size(item, dimension); auto containing_block_size = containing_block_size_for_item(item, dimension); return item.add_margin_box_sizes(preferred_size.to_px(grid_container(), containing_block_size), dimension, m_state); } CSSPixels GridFormattingContext::calculate_max_content_contribution(GridItem const& item, GridDimension const dimension) const { auto available_space_for_item = get_available_space_for_item(item); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, available_space_for_item); return should_treat_height_as_auto(item.box, available_space_for_item); }(); if (should_treat_preferred_size_as_auto) { return item.add_margin_box_sizes(calculate_max_content_size(item, dimension), dimension, m_state); } auto preferred_size = get_item_preferred_size(item, dimension); auto containing_block_size = containing_block_size_for_item(item, dimension); return item.add_margin_box_sizes(preferred_size.to_px(grid_container(), containing_block_size), dimension, m_state); } CSSPixels GridFormattingContext::calculate_limited_min_content_contribution(GridItem const& item, GridDimension const dimension) const { // The limited min-content contribution of an item is its min-content contribution, // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution. // FIXME: limit by max track sizing function auto min_content_contribution = calculate_min_content_contribution(item, dimension); auto minimum_contribution = calculate_minimum_contribution(item, dimension); if (min_content_contribution < minimum_contribution) return minimum_contribution; return min_content_contribution; } CSSPixels GridFormattingContext::calculate_limited_max_content_contribution(GridItem const& item, GridDimension const dimension) const { // The limited max-content contribution of an item is its max-content contribution, // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution. // FIXME: limit by max track sizing function auto max_content_contribution = calculate_max_content_contribution(item, dimension); auto minimum_contribution = calculate_minimum_contribution(item, dimension); if (max_content_contribution < minimum_contribution) return minimum_contribution; return max_content_contribution; } CSS::Size const& GridFormattingContext::get_item_minimum_size(GridItem const& item, GridDimension const dimension) const { if (dimension == GridDimension::Column) return item.box->computed_values().min_width(); return item.box->computed_values().min_height(); } CSSPixels GridFormattingContext::content_size_suggestion(GridItem const& item, GridDimension const dimension) const { // The content size suggestion is the min-content size in the relevant axis // FIXME: clamped, if it has a preferred aspect ratio, by any definite opposite-axis minimum and maximum sizes // converted through the aspect ratio. return calculate_min_content_size(item, dimension); } Optional GridFormattingContext::specified_size_suggestion(GridItem const& item, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-1/#specified-size-suggestion // If the item’s preferred size in the relevant axis is definite, then the specified size suggestion is that size. // It is otherwise undefined. auto const& used_values = m_state.get(item.box); auto has_definite_preferred_size = dimension == GridDimension::Column ? used_values.has_definite_width() : used_values.has_definite_height(); if (has_definite_preferred_size) { // FIXME: consider margins, padding and borders because it is outer size. auto containing_block_size = containing_block_size_for_item(item, dimension); return get_item_preferred_size(item, dimension).to_px(item.box, containing_block_size); } return {}; } CSSPixels GridFormattingContext::content_based_minimum_size(GridItem const& item, GridDimension const dimension) const { // https://www.w3.org/TR/css-grid-1/#content-based-minimum-size // The content-based minimum size for a grid item in a given dimension is its specified size suggestion if it exists if (auto specified_size_suggestion = this->specified_size_suggestion(item, dimension); specified_size_suggestion.has_value()) { return specified_size_suggestion.value(); } // FIXME: otherwise its transferred size suggestion if that exists // else its content size suggestion return content_size_suggestion(item, dimension); } CSSPixels GridFormattingContext::automatic_minimum_size(GridItem const& item, GridDimension const dimension) const { // To provide a more reasonable default minimum size for grid items, the used value of its automatic minimum size // in a given axis is the content-based minimum size if all of the following are true: // - it is not a scroll container // - it spans at least one track in that axis whose min track sizing function is auto // FIXME: - if it spans more than one track in that axis, none of those tracks are flexible auto const& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows; auto item_track_index = item.raw_position(dimension); // FIXME: Check all tracks spanned by an item AvailableSize const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height; auto item_spans_auto_tracks = tracks[item_track_index].min_track_sizing_function.is_auto(available_size); if (item_spans_auto_tracks && !item.box->is_scroll_container()) { return content_based_minimum_size(item, dimension); } // Otherwise, the automatic minimum size is zero, as usual. return 0; } CSSPixels GridFormattingContext::calculate_minimum_contribution(GridItem const& item, GridDimension const dimension) const { // The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. auto preferred_size = get_item_preferred_size(item, dimension); auto should_treat_preferred_size_as_auto = [&] { if (dimension == GridDimension::Column) return should_treat_width_as_auto(item.box, get_available_space_for_item(item)); return should_treat_height_as_auto(item.box, get_available_space_for_item(item)); }(); if (should_treat_preferred_size_as_auto) { auto minimum_size = get_item_minimum_size(item, dimension); if (minimum_size.is_auto()) return item.add_margin_box_sizes(automatic_minimum_size(item, dimension), dimension, m_state); auto containing_block_size = containing_block_size_for_item(item, dimension); return item.add_margin_box_sizes(minimum_size.to_px(grid_container(), containing_block_size), dimension, m_state); } return calculate_min_content_contribution(item, dimension); } } namespace AK { template<> struct Traits : public GenericTraits { static unsigned hash(Web::Layout::GridPosition const& key) { return pair_int_hash(key.row, key.column); } }; }