/* * Copyright (c) 2022, stelar7 * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include namespace Crypto::Cipher { ChaCha20::ChaCha20(ReadonlyBytes key, ReadonlyBytes nonce, u32 initial_counter) { VERIFY(key.size() == 16 || key.size() == 32); VERIFY(nonce.size() == 8 || nonce.size() == 12); // The first four words (0-3) are constants if (key.size() == 32) { m_state[0] = CONSTANT_32_BYTES[0]; m_state[1] = CONSTANT_32_BYTES[1]; m_state[2] = CONSTANT_32_BYTES[2]; m_state[3] = CONSTANT_32_BYTES[3]; } else { m_state[0] = CONSTANT_16_BYTES[0]; m_state[1] = CONSTANT_16_BYTES[1]; m_state[2] = CONSTANT_16_BYTES[2]; m_state[3] = CONSTANT_16_BYTES[3]; } // The next eight words (4-11) are taken from the key by reading the bytes in little-endian order, in 4-byte chunks. for (u32 i = 0; i < 16; i += 4) { m_state[(i / 4) + 4] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(i))); } // NOTE: For the 128-bit keys we read the same bytes twice to fill the state u32 key_offset = key.size() == 32 ? 16 : 0; for (u32 i = 0; i < 16; i += 4) { m_state[(i / 4) + 8] = AK::convert_between_host_and_little_endian(ByteReader::load32(key.offset(key_offset + i))); } // Word 12 is a block counter. Since each block is 64-bytes, a 32-bit word is enough for 256 gigabytes of data. m_state[12] = initial_counter; // Words 13-15 are a nonce, which should not be repeated for the same key. // The 13th word is the first 32 bits of the input nonce taken as a little-endian integer, // while the 15th word is the last 32 bits. // NOTE: In the case of an 8-byte nonce, we skip the 13th word u32 nonce_offset = nonce.size() == 8 ? 1 : 0; for (u32 i = 0; i < 12; i += 4) { m_state[(i / 4) + 13 + nonce_offset] = AK::convert_between_host_and_little_endian(ByteReader::load32(nonce.offset(i))); } } // https://datatracker.ietf.org/doc/html/rfc7539#section-2.3 void ChaCha20::generate_block() { // Copy the current state into the block memcpy(m_block, m_state, 16 * sizeof(u32)); // ChaCha20 runs 20 rounds, alternating between "column rounds" and "diagonal rounds". // Each round consists of four quarter-rounds for (u32 i = 0; i < 20; i += 2) { // Column rounds do_quarter_round(m_block[0], m_block[4], m_block[8], m_block[12]); do_quarter_round(m_block[1], m_block[5], m_block[9], m_block[13]); do_quarter_round(m_block[2], m_block[6], m_block[10], m_block[14]); do_quarter_round(m_block[3], m_block[7], m_block[11], m_block[15]); // Diagonal rounds do_quarter_round(m_block[0], m_block[5], m_block[10], m_block[15]); do_quarter_round(m_block[1], m_block[6], m_block[11], m_block[12]); do_quarter_round(m_block[2], m_block[7], m_block[8], m_block[13]); do_quarter_round(m_block[3], m_block[4], m_block[9], m_block[14]); } // At the end of 20 rounds, we add the original input words to the output words, for (u32 i = 0; i < 16; i++) { m_block[i] += m_state[i]; } // and serialize the result by sequencing the words one-by-one in little-endian order. for (u32 i = 0; i < 16; i++) { m_block[i] = AK::convert_between_host_and_little_endian(m_block[i]); } } ALWAYS_INLINE static void rotl(u32& x, u32 n) { x = (x << n) | (x >> (32 - n)); } // https://datatracker.ietf.org/doc/html/rfc8439#section-2.1 void ChaCha20::do_quarter_round(u32& a, u32& b, u32& c, u32& d) { a += b; d ^= a; rotl(d, 16); c += d; b ^= c; rotl(b, 12); a += b; d ^= a; rotl(d, 8); c += d; b ^= c; rotl(b, 7); } void ChaCha20::run_cipher(ReadonlyBytes input, Bytes& output) { size_t offset = 0; size_t block_offset = 0; while (offset < input.size()) { if (block_offset == 0 || block_offset >= 64) { // Generate a new XOR block generate_block(); // Increment the block counter, and carry over to block 13 m_state[12]++; if (m_state[12] == 0) { m_state[13]++; } block_offset = 0; } // XOR the input and the current block u32 n = min(input.size() - offset, 64 - block_offset); u8* key_block = (u8*)m_block + block_offset; for (u32 i = 0; i < n; i++) { u8 input_byte = input.offset_pointer(offset)[i]; u8 key_byte = key_block[i]; u8 output_byte = input_byte ^ key_byte; ByteReader::store(output.offset_pointer(offset + i), output_byte); } offset += n; block_offset += n; } } void ChaCha20::encrypt(ReadonlyBytes input, Bytes& output) { VERIFY(input.size() <= output.size()); this->run_cipher(input, output); } void ChaCha20::decrypt(ReadonlyBytes input, Bytes& output) { VERIFY(input.size() <= output.size()); this->run_cipher(input, output); } }