I had to look at this for a moment before I realized that sys$execve()
and the spawning of /bin/SystemServer at boot are taking two different
paths out of exec().
Add a comment to help the next person looking at it. :^)
Before this patch, we were leaking a ref on the open file description
used for the interpreter (the dynamic loader) in sys$execve().
This surfaced when adapting the syscall to use TRY(), since we were now
correctly transferring ownership of the interpreter to Process::exec()
and no longer holding on to a local copy of it (in `elf_result`).
Fixing the leak uncovered another problem. The interpreter description
would now get destroyed when returning from do_exec(), which led to a
kernel panic when attempting to acquire a mutex.
This happens because we're in a particularly delicate state when
returning from do_exec(). Everything is primed for the upcoming context
switch into the new executable image, and trying to block the thread
at this point will panic the kernel.
We fix this by destroying the interpreter description earlier in
do_exec(), at the point where we no longer need it.
When executing a dynamically linked program, we need to pass the main
program executable via a file descriptor to the dynamic loader.
Before this patch, we were allocating an FD for this purpose long after
it was safe to do anything fallible. If we were unable to allocate an
FD we would simply panic the kernel(!)
We now hoist the allocation so it can fail before we've committed to
a new executable.
Due to the use of ELF::Image::for_each_program_header(), we were
previously unable to use TRY() in the ELF loading code (since the return
statement inside TRY() would only return from the iteration callback.)
Once we commit to a new executable image in sys$execve(), we can no
longer return with an error to whoever called us from userspace.
We must make sure to surface any potential errors before that point.
This patch moves signal trampoline allocation before the commit.
A number of other things remain to be moved.
We previously allowed Thread to exist in a state where its m_name was
null, and had to work around that in various places.
This patch removes that possibility and forces those who would create a
thread (or change the name of one) to provide a NonnullOwnPtr<KString>
with the name.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
Prior to this change, both uid_t and gid_t were typedef'ed to `u32`.
This made it easy to use them interchangeably. Let's not allow that.
This patch adds UserID and GroupID using the AK::DistinctNumeric
mechanism we've already been employing for pid_t/ProcessID.
This patch replaces the remaining users of this API with the new
try_copy_kstring_from_user() instead. Note that we still convert to a
String for continued processing, and I've added FIXME about continuing
work on using KString all the way.
The compiler can re-order the structure (class) members if that's
necessary, so if we make Process to inherit from ProcFSExposedComponent,
even if the declaration is to inherit first from ProcessBase, then from
ProcFSExposedComponent and last from Weakable<Process>, the members of
class ProcFSExposedComponent (including the Ref-counted parts) are the
first members of the Process class.
This problem made it impossible to safely use the current toggling
method with the write-protection bit on the ProcessBase members, so
instead of inheriting from it, we make its members the last ones in the
Process class so we can safely locate and modify the corresponding page
write protection bit of these values.
We make sure that the Process class doesn't expand beyond 8192 bytes and
the protected values are always aligned on a page boundary.
Leave interrupts enabled so that we can still process IRQs. Critical
sections should only prevent preemption by another thread.
Co-authored-by: Tom <tomut@yahoo.com>
By making these functions static we close a window where we could get
preempted after calling Processor::current() and move to another
processor.
Co-authored-by: Tom <tomut@yahoo.com>
...and also RangeAllocator => VirtualRangeAllocator.
This clarifies that the ranges we're dealing with are *virtual* memory
ranges and not anything else.
The way the Process::FileDescriptions::allocate() API works today means
that two callers who allocate back to back without associating a
FileDescription with the allocated FD, will receive the same FD and thus
one will stomp over the other.
Naively tracking which FileDescriptions are allocated and moving onto
the next would introduce other bugs however, as now if you "allocate"
a fd and then return early further down the control flow of the syscall
you would leak that fd.
This change modifies this behavior by tracking which descriptions are
allocated and then having an RAII type to "deallocate" the fd if the
association is not setup the end of it's scope.
Before we start disabling acquisition of the big process lock for
specific syscalls, make sure to document and assert that all the
lock is held during all syscalls.