Threads now have numeric priorities with a base priority in the 1-99
range.
Whenever a runnable thread is *not* scheduled, its effective priority
is incremented by 1. This is tracked in Thread::m_extra_priority.
The effective priority of a thread is m_priority + m_extra_priority.
When a runnable thread *is* scheduled, its m_extra_priority is reset to
zero and the effective priority returns to base.
This means that lower-priority threads will always eventually get
scheduled to run, once its effective priority becomes high enough to
exceed the base priority of threads "above" it.
The previous values for ThreadPriority (Low, Normal and High) are now
replaced as follows:
Low -> 10
Normal -> 30
High -> 50
In other words, it will take 20 ticks for a "Low" priority thread to
get to "Normal" effective priority, and another 20 to reach "High".
This is not perfect, and I've used some quite naive data structures,
but I think the mechanism will allow us to build various new and
interesting optimizations, and we can figure out better data structures
later on. :^)
This removes a bunch of JsonValue copying from the hot path in thread
statistics fetching.
Also pre-size the thread statistics vector since we know the final size
up front. :^)
This is memory that's loaded from an inode (file) but not modified in
memory, so still identical to what's on disk. This kind of memory can
be freed and reloaded transparently from disk if needed.
Dirty private memory is all memory in non-inode-backed mappings that's
process-private, meaning it's not shared with any other process.
This patch exposes that number via SystemMonitor, giving us an idea of
how much memory each process is responsible for all on its own.
This patch exposes some fields about purgeable memory regions.
We now also show total purgeable volatile and non-volatile memory in
the big process table.
Using int was a mistake. This patch changes String, StringImpl,
StringView and StringBuilder to use size_t instead of int for lengths.
Obviously a lot of code needs to change as a result of this.
This patch adds these I/O counters to each thread:
- (Inode) file read bytes
- (Inode) file write bytes
- Unix socket read bytes
- Unix socket write bytes
- IPv4 socket read bytes
- IPv4 socket write bytes
These are then exposed in /proc/all and seen in SystemMonitor.
Previously it was not possible to see what each thread in a process was
up to, or how much CPU it was consuming. This patch fixes that.
SystemMonitor and "top" now show threads instead of just processes.
"ps" is gonna need some more fixing, but it at least builds for now.
Fixes#66.
This patch adds three separate per-process fault counters:
- Inode faults
An inode fault happens when we've memory-mapped a file from disk
and we end up having to load 1 page (4KB) of the file into memory.
- Zero faults
Memory returned by mmap() is lazily zeroed out. Every time we have
to zero out 1 page, we count a zero fault.
- CoW faults
VM objects can be shared by multiple mappings that make their own
unique copy iff they want to modify it. The typical reason here is
memory shared between a parent and child process.
Processes can now have an icon assigned, which is essentially a 16x16 RGBA32
bitmap exposed as a shared buffer ID.
You set the icon ID by calling set_process_icon(int) and the icon ID will be
exposed through /proc/all.
To make this work, I added a mechanism for making shared buffers globally
accessible. For safety reasons, each app seals the icon buffer before making
it global.
Right now the first call to GWindow::set_icon() is what determines the
process icon. We'll probably change this in the future. :^)