Also use a simple array of { dword, const char* } for the KSyms and put the
whole shebang in kmalloc_eternal() memory. This was a fugly source of
kmalloc perma-frag.
It walks all the live Inode objects and flushes pending metadata changes
wherever needed.
This could be optimized by keeping a separate list of dirty Inodes,
but let's not get ahead of ourselves.
Use a little template magic to have Retainable::release() call out to
T::will_be_destroyed() if such a function exists before actually calling
the destructor. This gives us full access to virtual functions in the
pre-destruction code.
This synchronous approach to inodes is silly, obviously. I need to rework
it so that the in-memory CoreInode object is the canonical inode, and then
we just need a sync() that flushes pending changes to disk.
The kernel now bills processes for time spent in kernelspace and userspace
separately. The accounting is forwarded to the parent process in reap().
This makes the "time" builtin in bash work.
This way the scheduler doesn't need to plumb the exit status into the waiter.
We still plumb the waitee pid though, I don't love it but it can be fixed.
mmap() will now map uncommitted pages that get allocated and zeroed upon the
first access. I also made /proc/PID/vm show number of "committed" bytes in
each region. This is so cool! :^)
I was surprised to find that dup()'ed fds don't share the close-on-exec flag.
That means it has to be stored separately from the FileDescriptor object.
Instead of memcpy'ing the entire screen every time we press enter at the
bottom, use the VGA start address register to make a "view" onto the
underlying memory that moves downward as we scroll.
Eventually we run out of memory and have to reset to the start of the
buffer. That's when we memcpy everything. It would be cool if there was
some way to get the hardware to act like a ring buffer with automatic
wrapping here but I don't know how to do that.
I didn't even put the { } properly around everything that would leak.
Let's make sure this works correctly by splitting out the work into a
helper called do_exec().
- Process::exec() needs to restore the original paging scope when called
on a non-current process.
- Add missing InterruptDisabler guards around g_processes access.
- Only flush the TLB when modifying the active page tables.