This change also removes as much direct use of JS::Promise in LibWeb
as possible. When specs refer to `Promise<T>` they should be assumed
to be referring to the WebIDL Promise type, not the JS::Promise type.
The one exception is the HostPromiseRejectionTracker hook on the JS
VM. This facility and its associated sets and events are intended to
expose the exact opaque object handles that were rejected to author
code. This is not possible with the WebIDL Promise type, so we have
to use JS::Promise or JS::Object to hold onto the promises.
It also exposes which specs need some updates in the area of
promises. WebDriver stands out in this regard. WebAudio could use
some more cross-references to WebIDL as well to clarify things.
There was no need to use FlyString for error messages, and it just
caused a bunch of churn since these strings typically only existed
during the lifetime of the error.
The following spec algorithms had changed since we implemented them:
- "parse a sizes attribute"
- "update the source set"
- "create a source set"
This commit brings them up to date, as well as adding some additional
logging when parsing the sizes attribute fails in some way.
For the SVG <use> element, we want to support loading HTML documents
that have a SVG element inside of it pointed to by the URL fragment.
In this situation we would need to fetch and parse the entire document
in SharedImageRequest (so that we can still cache the SVGs). Rename
SharedImageRequest to SharedResourceRequest to make the class a little
more generic for future usecases.
This was resulting in a whole lot of rebuilding whenever a new IDL
interface was added.
Instead, just directly include the prototype in every C++ file which
needs it. While we only really need a forward declaration in each cpp
file; including the full prototype header (which itself only includes
LibJS/Object.h, which is already transitively brought in by
PlatformObject) - it seems like a small price to pay compared to what
feels like a full rebuild of LibWeb whenever a new IDL file is added.
Given all of these includes are only needed for the ::initialize
method, there is probably a smart way of avoiding this problem
altogether. I've considered both using some macro trickery or generating
these functions somehow instead.
This changes the signature of queue_a_microtask() from AK:Function to
JS::HeapFunction to be more clear to the user of the functions that this
is what is used internally.
Rather than each element which supports dimension attributes needing to
implement parsing the attributes and setting the appropriate style, we
can generalize this functionality. This will also make each element more
closely resemble the spec text, as we will be effectively declaring, for
example, "The img element supports dimension attributes" in code.
A bunch of this is leftover from pre porting over to new AK::String.
For example, for functions which previously took a ByteString const&
now accepting a StringView.
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
Before this change, we would wake up on every event loop iteration to
drive animations in single-frame images. This was a complete waste of
time and caused 100% CPU usage on our main GitHub repo page.
With this change, CPU usage is ~1% when idle on the same page. :^)
This commit introduces a WEB_SET_PROTOTYPE_FOR_INTERFACE macro that
caches the interface name in a local static FlyString. This means that
we only pay for FlyString-from-literal lookup once per browser lifetime
instead of every time the interface is instantiated.
Normally, assigning to e.g document.body.onload will forward to
window.onload. However, in a detached DOM tree, there is no associated
window, so we have nowhere to forward to, making this a no-op.
The bulk of this change is making Document::window() return a nullable
pointer, as documents created by DOMParser or DOMImplementation do not
have an associated window object, and so must be able to return null
from here.
We previously used an empty optional to denote that a ReferrerPolicy is
in the default empty string state. However, later additions added an
explicit EmptyString state. This patch moves all users to the explicit
state, and stops using `Optional<ReferrerPolicy>` everywhere except for
when an option not being passed from JavaScript has meaning.
They currently assume the DOM node is an HTMLImageElement with respect
to handling the alt attribute. The HTMLInputElement will require the
same behavior.
We already have the src attribute stored as a String, so it's completely
wasteful to convert it to a ByteString. We were even doing it twice when
loading each image.
The BatchingDispatcher mechanism is used by HTMLImageElement to avoid
decoding one image at a time, since interleaving decode/layout/repaint
over and over takes way more time than doing many decodes followed by
a single layout/repaint pair.
Before this change, we didn't have a limit on how many batched loads
we'd allow ourselves to queue up, which could lead to situations where
more and more images kept being added to the queue, and never getting
processed.
This fixes the issue by putting an arbitrary limit (16) on the number
of batched image loads, and then allowing the flush to happen after
that instead of re-deferring processing.
Instead of making the "Entry" inner struct GC-allocated and marking
*that*, we now mark the image instead.
This fixes an issue found by ASAN on https://mozilla.com/
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
This change fixes GC-leak caused by following mutual dependency:
- SVGDecodedImageData owns JS::Handle for Page.
- SVGDecodedImageData is owned by visited objects.
by making everything inherited from HTML::DecodedImageData and
ListOfAvailableImages to be GC-allocated.
Generally, if visited object has a handle, very likely we leak
everything visited from object in a handle.
`<iframe>` and `<img>` tags share the same spec for several aspects of
lazy-loading: how the `loading` attribute works, the "will lazy load
element" steps, and a member for storing the lazy-load resumption
steps. So let's share the implementation by using a base class.
This mostly involves moving things around. However, we also change the
`start_intersection_observing_a_lazy_loading_element()` method to take
a LazyLoadingElement, and operate on one, instead of always casting to
HTMLImageElement.
We do unfortunately have to do some shenanigans to make the cast work,
by adding a virtual function stub in DOM::Element.
Before this change, we used Gfx::Bitmap to represent both decoded
images that are not going to be mutated and bitmaps corresponding
to canvases that could be mutated.
This change introduces a wrapper for bitmaps that are not going to be
mutated, so the painter could do caching: texture caching in the case
of GPU painter and potentially scaled bitmap caching in the case of CPU
painter.
With this change, we now have ~1200 CellAllocators across both LibJS and
LibWeb in a normal WebContent instance.
This gives us a minimum heap size of 4.7 MiB in the scenario where we
only have one cell allocated per type. Of course, in practice there will
be many more of each type, so the effective overhead is quite a bit
smaller than that in practice.
I left a few types unconverted to this mechanism because I got tired of
doing this. :^)
This commit removes DeprecatedString's "null" state, and replaces all
its users with one of the following:
- A normal, empty DeprecatedString
- Optional<DeprecatedString>
Note that null states of DeprecatedFlyString/StringView/etc are *not*
affected by this commit. However, DeprecatedString::empty() is now
considered equal to a null StringView.