DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
After setting up all the bindings in function_declaration_instantiation,
we now ask DeclarativeEnvironment to do a shrink_to_fit() on its vector
of bindings.
This ends up saving 5.6 MiB on twitter.com/awesomekling :^)
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This makes more sense as an Object method rather than living within the
VM class for no good reason. Most of the other 7.3.xx AOs already work
the same way.
Also add spec comments while we're here.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
The bytecode interpreter can execute generator functions while the AST
interpreter cannot. This simply makes it create a new bytecode
interpreter when one doesn't exist when executing a generator function.
Doing so makes it automatically switch to the bytecode interpreter to
execute any future code until it exits the generator.
A struct with three raw pointers to other GC'd types is a pretty big
liability, let's just turn this into a Cell itself.
This comes with the additional benefit of being able to capture it in
a lambda effortlessly, without having to create handles for individual
members.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
- Prefer VM::current_realm() over GlobalObject::associated_realm()
- Prefer VM::heap() over GlobalObject::heap()
- Prefer Cell::vm() over Cell::global_object()
- Prefer Wrapper::vm() over Wrapper::global_object()
- Inline Realm::global_object() calls used to access intrinsics as they
will later perform a direct lookup without going through the global
object
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception
This is a continuation of the previous four commits.
Passing a global object here is largely redundant, we definitely need
the interpreter but can get the VM and (later) current active realm from
there - and also the global object while we still need it, although I'd
like to remove Interpreter::global_object() in the future.
This now matches the bytecode interpreter's execute_impl() functions.
This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
The change in 3ec0183 wasn't actually correct, the spec tells us to set
the "prototype" property of the function (created with a prototype of
%GeneratorFunction.prototype% itself) to a newly created object:
OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%)
This was defined twice, despite being the very same thing:
- ClassElement::ClassFieldDefinition
- ECMAScriptFunctionObject::InstanceField
Move the former to a new header and use it everywhere. Also update the
define_field() AO to take a single field instead of separate name and
initializer arguments.
Having all spec comments verbatim on their own line with no additions
made by us will make it easier to automate comparing said comments to
their current spec counterparts.
While adding spec comments to PerformEval, I noticed we were missing
multiple steps.
Namely, these were:
- Checking if the host will allow us to compile the string
(allowing LibWeb to perform CSP for eval)
- The parser's initial state depending on the environment around us
on direct eval:
- Allowing new.target via eval in functions
- Allowing super calls and super properties via eval in classes
- Disallowing the use of the arguments object in class field
initializers at eval's parse time
- Setting ScriptOrModule of eval's execution context
The spec allows us to apply the additional parsing steps in any order.
The method I have gone with is passing in a struct to the parser's
constructor, which overrides the parser's initial state to (dis)allow
the things stated above from the get-go.
Now we emit CreateVariable and SetVariable with the appropriate
initialization/environment modes, much closer to the spec.
This makes a whole lot of things like let/const variables, function
and variable hoisting and some other things work :^)