In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
Font programs are bytecode programs defining glyphs. If several glyphs
share a piece of outline, that opcode sequence can be put in a
subroutine ("subr") table and the definition of those glyphs can then
call that subroutine by number, to reduce file size.
CFF fonts can in theory contain multiple fonts, and so there's a global
subr table shared by all the fonts in one CFF, and a local per-fornt
subr table. We used to only implement the local subr table, now we
implement both.
(We only support one font per CFF, and at least in PDF files, that's
all that's ever used. So a global subr table isn't very useful.
But the spec explicitly allows it -- "Global subroutines may be used in
a FontSet even if it only contains one font." -- and it happens in
practice.)
https://adobe-type-tools.github.io/font-tech-notes/pdfs/T1_SPEC.pdf :
"Using charstring subroutines is not a requirement of a Type 1
font program."
And some versions of Computer Modern do in fact not contain a Subrs
array.
Together with #21473, makes Problemset.pdf from the pdffiles repro
render ok instead of crashing.
A limit of 1024 subroutines seemed like a sensible choice, but some
fonts actually do exceed it. We will now only assert that the specified
amount is positive.
Type1 accented character glyphs are composed of two other glyphs in the
same font: a base glyph and an accent glyph, given as char codes in the
standard encoding. These two glyphs are then composed together to form
the accented character.
This commit adds the data structures to hold the information for
accented characters, and also the routine that composes the final glyph
path out of the two individual components. All glyphs must have been
loaded by the time this composition takes place, and thus a new
protected consolidate_glyphs() routine has been added to perform this
calculation.
Storing glyphs indexed by char code in a Type1 Font Program binds a Font
Program instance to the particular Encoding that was used at Font
Program construction time. This makes it difficult to reuse Font Program
instances against different Encodings, which would be otherwise
possible.
This commit changes how we store the glyphs on Type1 Font Programs.
Instead of storing them on a map indexed by char code, the map is now
indexed by glyph name. In turn, when rendering a glyph we use the
Encoding object to turn the char code into a glyph name, which in turn
is used to index into the map of glyphs.
This is the first step towards reusability of Type1 Font Programs. It
also unlocks the ability to render glyphs that are described via the
"seac" command (standard encoding accented character), which requires
accessing the base and accent glyphs by name.
All "Simple Fonts" in PDF (all but Type0 fonts) have the property that
glyphs are selected with single byte character codes. This means that
the Encoding objects should use u8 for representing these character
codes. Moreover, and as mentioned in a previous commit, there is no need
to store the unicode code point associated with a character (which was
in turn wrongly associated to a glyph).
This commit greatly simplifies the Encoding class. Namely it:
* Removes the unnecessary CharDescriptor class.
* Changes the internal maps to be u8 -> FlyString and vice-versa,
effectively providing two-way lookups.
* Adds a new method to set a two-way u8 -> FlyString mapping and uses
it in all possible places.
* Simplified the creation of Encoding objects.
* Changes how the WinAnsi special treatment for bullet points is
implemented.
The Type1FontProgram logic was based on the Adobe Type 1 Font Format; in
particular, it implemented the CharStrings Dictionary section
(charstring decoding, and most commands). In the case of Type1, these
charstrings are read from a PS1 diciontary, with one entry per character
in the font's charset. This has served us well for Type1 font rendering.
When implementing Type1C font rendering, this wasn't enough. Type1C PDF
fonts are specified in embedded CFF (Compact Font File) streams, which
also contain a charstring dictionary with an entry for each character in
the font's charset. These entries can be slightly different from those
in a PS1 Font Program though: depending on a flag in the CFF, the
entries will be encoded either in the original charstring format from
the Adobe Type 1 Font Format, or in the "Type 2 Charstring Format"
(Adobe's Technical Note #1577). This new format is for the most part a
super-set of the original, with small differences, all in the name of
making the representation as compact as possible:
* The glyph's width is not specified via a separate command; instead
it's an optional additional argument to the first command of the
charstring stream (and even then, it's only the *difference* to a
nominal character width specified in the CFF).
* The interpretation of a 4-byte number is different from Type 1: in
Type 1 this is a 4-byte unsigned integer, whereas in Type 1 it's a
fixed decimal with 16 bits of fractional part.
* Many commands accept a variable set of arguments, so they can draw
more than one line/curve on a single go. These are all
retro-compatible with Type 1's commands.
All these changes are implemented in this patch in a
backwards-compatible way. To ensure Type 1/2 behavior is accessed, a new
parameter indicates which behavior is desired when decoding the
charstring stream.
I also took the chance to centralise some logic that was previously
duplicated across the parse_glyph function. Common lambdas capture the
logic for moving to, or drawing a line/curve to a given point and
updating the glyph state. Similarly, some command logic, including
reading parameters, are shared by several commands. Finally, I've
re-organised the cases in the main switch to group together related
commands.
We are planning to add support for CFF fonts to read Type1 fonts, and
therefore much of the logic already found in PS1FontProgram will be
useful for representing the Type1 fonts read from CFF.
This commit moves the PS1-independent bits of PS1FontProgram into a new
Type1FontProgram base class that can be used as the base for CFF-based
Type1 fonts in the future. The Type1Font class uses this new type now
instead of storing a PS1FontProgram pointer. While doing this
refactoring I also took care of making some minor adjustments to the
PS1FontProgram API, namely:
* Its create() method is static and returns a
NonnullRefPtr<Type1FontProgram>.
* Many (all?) of the parse_* methods are now static.
* Added const where possible.
Notably, the Type1FontProgram also contains at the moment the code that
parses the CharString data from the PS1 program. This logic is very
similar in CFF files, so after some minor adjustments later on it should
be possible to reuse most of it.
This command is meant to print an Standard Encoding Accented Character.
It's not critical to implement it yet, but if we want to render more
documents we need to handle the instruction, even if simply ignore it.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
We would previously pass this function a unicode code point, which is
not actually what we want here.
Instead, we want the "raw" code point, with the font itself deciding
whether or not it needs to be re-mapped.
This same mistake in terminology applied to PS1FontProgram.
This gives much better visual results than painting the path directly.
It also has the nice side effect that Type 1 fonts will now look much
more similar to TrueType fonts, which use the same class :^)
In addition, we can now cache glyph bitmaps for repeated use.
Previously we would draw all text, no matter what font type, as
Liberation Serif, which results in things like ugly character spacing.
We now have partial support for drawing Type 1 glyphs, which are part of
a PostScript font program. We completely ignore hinting for now, which
results in ugly looking characters at low resolutions, but gain support
for a large number of typefaces, including most of the default fonts
used in TeX.