The previous implementation used relative X offsets for both left and
right-side floats. This made right-side floats super awkward, since we
could only determine their X position once the width of the BFC root was
known, and for BFC roots with automatic width, this was not even working
at all most of the time.
This patch changes the way we deal with floats so that BFC keeps track
of the offset-from-edge for each float. The offset is the distance from
the BFC root edge (left or right, depending on float direction) to the
"innermost" margin edge of the floating box.
Floating box are now laid out in two passes: while going through the
normal flow layout, we put floats in their *static* position (i.e the
position they would have occupied if they weren't floating) and then
update the Y position value to the final one.
The second pass occurs later on, when the BFC root has had its width
assigned by the parent context. Once we know the root width, we can
set the X position value of floating boxes. (Because the X position of
right-side floats is relative to the right edge of the BFC root.)
This is preparation for allowing blocks with their own internal BFC to
flow around floating boxes in the parent BFC.
Note that IFC still has the available_space_for_line() API, which
returns space available within the IFC's own containing block, while the
BFC available_space_for_line() returns space available within its root.
FormattingContext can now calculate the intrinsic sizes (min-content and
max-content in both axes) for a given Layout::Box.
This is a rather expensive operation, as it necessitates performing two
throwaway layouts of the subtree rooted at the box. Fortunately, we can
cache the results of these calculations, as intrinsic sizes don't change
based on other context around the box. They are intrinsic after all. :^)
I was wrong in 56df05ae44, there are
situations where floating children should not affect the auto height of
their parent.
It turns out we were using the "height:auto for BFC roots" algorithm for
all height:auto blocks. This patch fixes that by splitting it into two
separate functions, and implementing most of the two different variants.
Note that we don't support vertical margin collapsing here yet.
Thanks to Tim for noticing the error! :^)
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
Until now, some formatting contexts (BFC in particular) have been
assigning size to the root box. This is really the responsibility of the
parent formatting context, so let's stop doing it.
To keep position:absolute working, parent formatting contexts now notify
child contexts when the child's root box has been sized. (Note that the
important thing here is for the child root to have its final used height
before it's able to place bottom-relative boxes.)
This breaks flexbox layout in some ways, but we'll have to address those
by improving the spec compliance of FFC.)
This patch breaks FormattingContext::layout_inside() into two functions,
one that creates an independent formatting context (if needed), and
another that calls the former and then performs the inside layout within
the appropriate context.
The main goal here was to make layout_inside() return the independent
formatting context if one was created. This will allow us to defer
certain operations in child contexts until the parent context has
finished formatting the child root box.
Height computation algorithm is actually
different for absolutely positioned boxes
and block formatting contexts (where it doesn't include floats)
Fixes#6408
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This commit fixes algorithm for computing auto height (CSS 2.2 10.6.7)
by including floating boxes into computation and implements one of the cases
for computing the height of absolutely positioned, non-replaced elements (10.6.4 rule 3)