We've finally gotten kmalloc to a point where it feels decent enough
to drop this comment.
There's still a lot of room for improvement, and we'll continue working
on it.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
This patch adds generic slab allocators to kmalloc. In this initial
version, the slab sizes are 16, 32, 64, 128, 256 and 512 bytes.
Slabheaps are backed by 64 KiB block-aligned blocks with freelists,
similar to what we do in LibC malloc and LibJS Heap.
There are no more users of the C-style kfree() API in the kernel,
so let's get rid of it and enjoy the new world where we always know
how much memory we are freeing. :^)
This patch does two things:
- Combines kmalloc_aligned() and kmalloc_aligned_cxx(). Templatizing
the alignment parameter doesn't seem like a valuable enough
optimization to justify having two almost-identical implementations.
- Stores the real allocation size of an aligned allocation along with
the other alignment metadata, and uses it to call kfree_sized()
instead of kfree().
Since we allocate the subheap in the first page of the given storage
let's assert that the subheap can actually fit in a single page, to
prevent the possible future headache of trying to debug the cause of
random kernel memory corruption :^)
This avoids getting caught with our pants down when heap expansion fails
due to missing page tables. It also avoids a circular dependency on
kmalloc() by way of HashMap::set() in MemoryManager::ensure_pte().
Previously, the heap expansion logic could end up calling kmalloc
recursively, which was quite messy and hard to reason about.
This patch redesigns heap expansion so that it's kmalloc-free:
- We make a single large virtual range allocation at startup
- When expanding, we bump allocate VM from that region
- When expanding, we populate page tables directly ourselves,
instead of going via MemoryManager.
This makes heap expansion a great deal simpler. However, do note that it
introduces two new flaws that we'll need to deal with eventually:
- The single virtual range allocation is limited to 64 MiB and once
exhausted, kmalloc() will fail. (Actually, it will PANIC for now..)
- The kmalloc heap can no longer shrink once expanded. Subheaps stay
in place once constructed.
SonarCloud flagged this "Code Smell", where we are accessing these
static methods as if they are instance methods. While it is technically
possible, it is very confusing to read when you realize they are static
functions.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
This is the idiomatic way to declare type aliases in modern C++.
Flagged by Sonar Cloud as a "Code Smell", but I happen to agree
with this particular one. :^)
In e7fb70b05, regular kmalloc was changed to return nullptr on
allocation failure instead of crashing. The `kmalloc_aligned_cxx`
wrapper used by the aligned operator new should do the same.
Now that we have a significant amount of code paths handling OOM, lets
enable kmalloc and friends to actually return nullptr. This way we can
start stressing these paths and validating all of they work as expected.
By making these functions static we close a window where we could get
preempted after calling Processor::current() and move to another
processor.
Co-authored-by: Tom <tomut@yahoo.com>
Kernels built with Clang seem to be quite allocation-heavy compared to
their GCC counterparts. We would sometimes end up crashing during boot
because the eternal ranges had no free capacity.
The compiler will use these to allocate objects that have alignment
requirements greater than that of our normal `operator new` (4/8 byte
aligned).
This means we can now use smart pointers for over-aligned types.
Fixes a FIXME.
This was only used by a single class (AK::ByteBuffer) in the kernel
and not in an OOM-safe way.
Now that ByteBuffer no longer uses it, there's no need for the kernel
heap to burden itself with supporting this.
C++14 gave us sized operator delete, but we haven't been taking
advantage of it. Let's get to a point where it can help us by
adding kfree_sized(void*, size_t).
When creating uninitialized storage for variables, we need to make sure
that the alignment is correct. Fixes a KUBSAN failure when running
kernels compiled with Clang.
In `Syscalls/socket.cpp`, we can simply use local variables, as
`sockaddr_un` is a POD type.
Along with moving the `alignas` specifier to the correct member,
`AK::Optional`'s internal buffer has been made non-zeroed by default.
GCC emitted bogus uninitialized memory access warnings, so we now use
`__builtin_launder` to tell the compiler that we know what we are doing.
This might disable some optimizations, but judging by how GCC failed to
notice that the memory's initialization is dependent on `m_has_value`,
I'm not sure that's a bad thing.
In standard C++, operators `new` and `new[]` are guaranteed to return a
valid (non-null) pointer and throw an exception if the allocation
couldn't be performed. Based on this, compilers did not check the
returned pointer before attempting to use them for object construction.
To avoid this, the allocator operators were changed to be `noexcept` in
PR #7026, which made GCC emit the desired null checks. Unfortunately,
this is a non-standard feature which meant that Clang would not accept
these function definitions, as it did not match its expected
declaration.
To make compiling using Clang possible, the special "nothrow" versions
of `new` are implemented in this commit. These take a tag type of
`std::nothrow_t` (used for disambiguating from placement new/etc.), and
are allowed by the standard to return null. There is a global variable,
`std::nothrow`, declared with this type, which is also exported into the
global namespace.
To perform fallible allocations, the following syntax should be used:
```cpp
auto ptr = new (nothrow) T;
```
As we don't support exceptions in the kernel, the only way of uphold the
"throwing" new's guarantee is to abort if the allocation couldn't be
performed. Once we have proper OOM handling in the kernel, this should
only be used for critical allocations, where we wouldn't be able to
recover from allocation failures anyway.
There were a few cases where we could end up logging profiling events
before or after the associated process or thread exists in the profile:
After enabling profiling we might end up with CPU samples before we
had a chance to synthesize process/thread creation events.
After a thread exits we would still log associated kmalloc/kfree
events. Instead we now just ignore those events.
This implements the macOS API malloc_good_size() which returns the
true allocation size for a given requested allocation size. This
allows us to make use of all the available memory in a malloc chunk.
For example, for a malloc request of 35 bytes our malloc would
internally use a chunk of size 64, however the remaining 29 bytes
would be unused.
Knowing the true allocation size allows us to request more usable
memory that would otherwise be wasted and make that available for
Vector, HashTable and potentially other callers in the future.
Ideally we would never allocate under a spinlock, as it has many
performance and potentially functionality (deadlock) pitfalls.
We violate that rule in many places today, but we need a tool to track
them all down and fix them. This change introduces a new macro option
named `KMALLOC_VERIFY_NO_SPINLOCK_HELD` which can catch these
situations at runtime via an assert.
For Kernel OOM hardening to work correctly, we need to be able to
call a "nothrow" version of operator new. Unfortunately the default
"throwing" version of operator new assumes that the allocation will
never return on failure and will always throw an exception. This isn't
true in the Kernel, as we don't have exceptions. So if we call the
normal/throwing new and kmalloc returns NULL, the generated code will
happily go and dereference that NULL pointer by invoking the constructor
before we have a chance to handle the failure.
To fix this we declare operator new as noexcept in the Kernel headers,
which will allow the caller to actually handle allocation failure.
The delete implementations need to match the prototype of the new which
allocated them, so we need define delete as noexcept as well. GCC then
errors out declaring that you should implement sized delete as well, so
this change provides those stubs in order to compile cleanly.
Finally the new operator definitions have been standardized as being
declared with [[nodiscard]] to avoid potential memory leaks. So lets
declares the kernel versions that way as well.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Alot of code is shared between i386/i686/x86 and x86_64
and a lot probably will be used for compatability modes.
So we start by moving the headers into one Directory.
We will probalby be able to move some cpp files aswell.
The system is extremely sensitive to heap allocations during heap
expansion. This was causing frequent OOM panics under various loads.
Work around the issue for now by putting the logging behind
KMALLOC_DEBUG. Ideally dmesgln() & friends would not reqiure any
heap allocations, but we're not there right now.
Fixes#5724.