FormattingStates can have parents, in case we're performing nested
layouts to determine something's intrinsic size. In those cases, it will
soon be useful to find the outermost (root) state.
Previously, each NodeState in a FormattingState was shared with the
parent FormattingState, but the HashMap of NodeState had to be copied
when making FormattingState copies.
This patch makes copying instant by keeping a pointer to the parent
FormattingState instead. When fetching immutable state via get(), we may
now return a reference to a NodeState owned by a parent FormattingState.
get_mutable() will copy any NodeState found in the ancestor chain before
making a brand new one.
FormattingContext can now calculate the intrinsic sizes (min-content and
max-content in both axes) for a given Layout::Box.
This is a rather expensive operation, as it necessitates performing two
throwaway layouts of the subtree rooted at the box. Fortunately, we can
cache the results of these calculations, as intrinsic sizes don't change
based on other context around the box. They are intrinsic after all. :^)
The "paintable" state in Layout::Box was actually not safe to access
until after layout had been performed.
As a first step towards making this harder to mess up accidentally,
this patch moves painting information from Layout::Box to a new class:
Painting::Box. Every layout can have a corresponding paint box, and
it holds the final used metrics determined by layout.
The paint box is created and populated by FormattingState::commit().
I've also added DOM::Node::paint_box() as a convenient way to access
the paint box (if available) of a given DOM node.
Going forward, I believe this will allow us to better separate data
that belongs to layout vs painting, and also open up opportunities
for naturally invalidating caches in the paint box (since it's
reconstituted by every layout.)
Instead of making a full copy of every NodeState when cloning a
FormattingState, we make NodeState ref-counted and implement a basic
copy-on-write mechanism.
FormattingState::get_mutable() now makes a deep copy of the NodeState
when first accessed *if* it is shared with other FormattingStates.
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)