This compiles, and fixes two bugs:
- setpgid() confusion (see previous commit)
- tcsetpgrp() now allows to set a non-empty process group even if
the group leader has already died. This makes Serenity slightly
more POSIX-compatible.
This compiles, and contains exactly the same bugs as before.
The regex 'FIXME: PID/' should reveal all markers that I left behind, including:
- Incomplete conversion
- Issues or things that look fishy
- Actual bugs that will go wrong during runtime
This fixes a regression introduced by the new software context
switching where the Kernel would not deliver a signal unless the
process is making system calls. This is because the TSS no longer
updates the CS value, so the scheduler never considered delivery
as the process always appeared to be in kernel mode. With software
context switching we can just set up the signal trampoline at
any time and when the processor returns back to user mode it'll
get executed. This should fix e.g. killing programs that are
stuck in some tight loop that doesn't make any system calls and
is only pre-empted by the timer interrupt.
Fixes#2958
By making the Process class RefCounted we don't really need
ProcessInspectionHandle anymore. This also fixes some race
conditions where a Process may be deleted while still being
used by ProcFS.
Also make sure to acquire the Process' lock when accessing
regions.
Last but not least, there's no reason why a thread can't be
scheduled while being inspected, though in practice it won't
happen anyway because the scheduler lock is held at the same
time.
This is something I've been meaning to do for a long time, and here we
finally go. This patch moves all sys$foo functions out of Process.cpp
and into files in Kernel/Syscalls/.
It's not exactly one syscall per file (although it could be, but I got
a bit tired of the repetitive work here..)
This makes hacking on individual syscalls a lot less painful since you
don't have to rebuild nearly as much code every time. I'm also hopeful
that this makes it easier to understand individual syscalls. :^)
Fixes#2871.
Ignoring the 'securely generated bytes' constraint seems to
be fine for Linux, so it's probably fine for Serenity.
Note that there *might* be more bottlenecks down the road
if Serenity is started in a non-GUI way. Currently though,
loading the GUI seems to generate enough interrupts to
seed the entropy pool, even on my non-RDRAND setup. Yay! :^)
For now, only the non-standard _SC_NPROCESSORS_CONF and
_SC_NPROCESSORS_ONLN are implemented.
Use them to make ninja pick a better default -j value.
While here, make the ninja package script not fail if
no other port has been built yet.
We now have BlockResult::WokeNormally and BlockResult::NotBlocked,
both of which indicate no error. We can no longer just check for
BlockResult::WokeNormally and assume anything else must be an
interruption.
The AT_* entries are placed after the environment variables, so that
they can be found by iterating until the end of the envp array, and then
going even further beyond :^)
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
These changes solve a number of problems with the software
context swithcing:
* The scheduler lock really should be held throughout context switches
* Transitioning from the initial (idle) thread to another needs to
hold the scheduler lock
* Transitioning from a dying thread to another also needs to hold
the scheduler lock
* Dying threads cannot necessarily be finalized if they haven't
switched out of it yet, so flag them as active while a processor
is running it (the Running state may be switched to Dying while
it still is actually running)
The Lock class still permits no reason, but for everything else
require a reason to be passed to Thread::wait_on. This makes it
easier to diagnose why a Thread is in Queued state.
When delivering urgent signals to the current thread
we need to check if we should be unblocked, and if not
we need to yield to another process.
We also need to make sure that we suppress context switches
during Process::exec() so that we don't clobber the registers
that it sets up (eip mainly) by a context switch. To be able
to do that we add the concept of a critical section, which are
similar to Process::m_in_irq but different in that they can be
requested at any time. Calls to Scheduler::yield and
Scheduler::donate_to will return instantly without triggering
a context switch, but the processor will then asynchronously
trigger a context switch once the critical section is left.
If a partial write succeeded, we could then be in an unexpected state
where the file description was non-blocking, but we could no longer
write to it.
Previously, the kernel would block in that state, but instead we now
handle this as a proper short write and return the number of bytes
we were able to write.
Fixes#2645.
These new syscalls allow you to send and receive file descriptors over
a local domain socket. This will enable various privilege separation
techniques and other good stuff. :^)
ppoll() is similar() to poll(), but it takes its timeout
as timespec instead of as int, and it takes an additional
sigmask parameter.
Change the sys$poll parameters to match ppoll() and implement
poll() in terms of ppoll().
pselect() is similar() to select(), but it takes its timeout
as timespec instead of as timeval, and it takes an additional
sigmask parameter.
Change the sys$select parameters to match pselect() and implement
select() in terms of pselect().
It looks like they're considered a bad idea, so let's not add
them before we need them. I figured it's good to have them in
git history if we ever do need them though, hence the add/remove
dance.
Add seteuid()/setegid() under _POSIX_SAVED_IDS semantics,
which also requires adding suid and sgid to Process, and
changing setuid()/setgid() to honor these semantics.
The exact semantics aren't specified by POSIX and differ
between different Unix implementations. This patch makes
serenity follow FreeBSD. The 2002 USENIX paper
"Setuid Demystified" explains the differences well.
In addition to seteuid() and setegid() this also adds
setreuid()/setregid() and setresuid()/setresgid(), and
the accessors getresuid()/getresgid().
Also reorder uid/euid functions so that they are the
same order everywhere (namely, the order that
geteuid()/getuid() already have).
That's not how readlink() is supposed to work: it should copy as many bytes
as fit into the buffer, and return the number of bytes copied. So do that,
but add a twist: make sys$readlink() actually return the whole size, not
the number of bytes copied. We fix up this return value in userspace, to make
LibC's readlink() behave as expected, but this will also allow other code
to allocate a buffer of just the right size.
Also, avoid an extra copy of the link target.
Since we're not keeping compatibility with OpenBSD about what promises are
required for which syscalls, tighten things up so that they make more sense.
This adds support for MS_RDONLY, a mount flag that tells the kernel to disallow
any attempts to write to the newly mounted filesystem. As this flag is
per-mount, and different mounts of the same filesystems (such as in case of bind
mounts) can have different mutability settings, you have to go though a custody
to find out if the filesystem is mounted read-only, instead of just asking the
filesystem itself whether it's inherently read-only.
This also adds a lot of checks we were previously missing; and moves some of
them to happen after more specific checks (such as regular permission checks).
One outstanding hole in this system is sys$mprotect(PROT_WRITE), as there's no
way we can know if the original file description this region has been mounted
from had been opened through a readonly mount point. Currently, we always allow
such sys$mprotect() calls to succeed, which effectively allows anyone to
circumvent the effect of MS_RDONLY. We should solve this one way or another.
If we fail to exec() the target executable, don't leak the thread (this actually
triggers an assertion when destructing the process), and print an error message.
When mounting Ext2FS, we don't care if the file has a custody (it doesn't if
it's a device, which is a common case). When doing a bind-mount, we do need a
custody; if none is provided, let's return an error instead of crashing.
And move canonicalized_path() to a static method on LexicalPath.
This is to make it clear that FileSystemPath/canonicalized_path() only
perform *lexical* canonicalization.