This might've been needed at some point to disambiguate between another
function of the same name that is in LibLocale. But now that it takes a
VM parameter, it is for sure clear to the compiler what is being called.
In order to prevent this commit from having to refactor almost all of
Intl, the goal here is to update the internal parsing/canonicalization
of locales within LibLocale only. Call sites which are already equiped
to handle String and OOM errors do so, however.
This makes construction of Utf16String fallible in OOM conditions. The
immediate impact is that PrimitiveString must then be fallible as well,
as it may either transcode UTF-8 to UTF-16, or create a UTF-16 string
from ropes.
There are a couple of places where it is very non-trivial to propagate
the error further. A FIXME has been added to those locations.
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
In a subclass of Cell, we cannot use Cell::vm() before the base Cell
object itself is constructed. Use the Realm's VM instead.
This was caught by UBSAN with vptr sanitation enabled.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
Instead of passing a GlobalObject everywhere, we will simply pass a VM,
from which we can get everything we need: common names, the current
realm, symbols, arguments, the heap, and a few other things.
In some places we already don't actually need a global object and just
do it for consistency - no more `auto& vm = global_object.vm();`!
This will eventually automatically fix the "wrong realm" issue we have
in some places where we (incorrectly) use the global object from the
allocating object, e.g. in call() / construct() implementations. When
only ever a VM is passed around, this issue can't happen :^)
I've decided to split this change into a series of patches that should
keep each commit down do a somewhat manageable size.
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Allocating a Vector for each of these invocations is a bit silly when
the values are basically all compile-time arrays. This AO is used even
more heavily by Intl.DateTimeFormat, so change it to accept a Span to
reduce its cost.
This also adds an overload to accept a fixed-size C-array so callers do
not have to be prefixed with AK::Array, i.e. this:
get_option(..., AK::Array { "a"sv, "b"sv }, ...);
Reduces to:
get_option(..., { "a"sv, "b"sv }, ...);
(Which is how all call sites were already written to construct a Vector
in place).
Both at the same time because many of them call construct() in call()
and I'm not keen on adding a bunch of temporary plumbing to turn
exceptions into throw completions.
Also changes the return value of construct() to Object* instead of Value
as it always needs to return an object; allowing an arbitrary Value is a
massive foot gun.
Previously, LibUnicode would store the values of a keyword as a Vector.
For example, the locale "en-u-ca-abc-def" would have its keyword "ca"
stored as {"abc, "def"}. Then, canonicalization would occur on each of
the elements in that Vector.
This is incorrect because, for example, the keyword value "true" should
only be dropped if that is the entire value. That is, the canonical form
of "en-u-kb-true" is "en-u-kb", but "en-u-kb-abc-true" does not change
for canonicalization. However, we would canonicalize that locale as
"en-u-kb-abc".