"[Function.length is] the number of formal parameters. This number
excludes the rest parameter and only includes parameters before
the first one with a default value." - MDN
To make processing tagged template literals easier, template literals
will now add one empty StringLiteral before and after each template
expression *if* there's no other string - e.g.:
`${foo}` -> "", foo, ""
`test${foo}${bar}test` -> "test", foo, "", bar, "test"
This also matches the behaviour of many other parsers.
A regression was introduced in dc9b4da where the parser would
incorrectly parse the assignment of arrow functions to (non-declaration)
variables. For example, consider:
a = () => {}
Because the parser was aware of default parameters, in
try_parse_arrow_function, the equals sign would be interpreted as a
default argument, leading to incorrect parsing of the overall
expression. Also resulted in some funny behavior
(a = () => {} => {} worked just fine!).
The simple fix is to only look for default parameters if the arrow
function is required to have parenthesis.
Adds fully functioning template literals. Because template literals
contain expressions, most of the work has to be done in the Lexer rather
than the Parser. And because of the complexity of template literals
(expressions, nesting, escapes, etc), the Lexer needs to have some
template-related state.
When entering a new template literal, a TemplateLiteralStart token is
emitted. When inside a literal, all text will be parsed up until a '${'
or '`' (or EOF, but that's a syntax error) is seen, and then a
TemplateLiteralExprStart token is emitted. At this point, the Lexer
proceeds as normal, however it keeps track of the number of opening
and closing curly braces it has seen in order to determine the close
of the expression. Once it finds a matching curly brace for the '${',
a TemplateLiteralExprEnd token is emitted and the state is updated
accordingly.
When the Lexer is inside of a template literal, but not an expression,
and sees a '`', this must be the closing grave: a TemplateLiteralEnd
token is emitted.
The state required to correctly parse template strings consists of a
vector (for nesting) of two pieces of information: whether or not we
are in a template expression (as opposed to a template string); and
the count of the number of unmatched open curly braces we have seen
(only applicable if the Lexer is currently in a template expression).
TODO: Add support for template literal newlines in the JS REPL (this will
cause a syntax error currently):
> `foo
> bar`
'foo
bar'
We already skipped random semicolons in Parser::parse_program(), but now
they are properly matched and parsed as empty statements - and thus
recognized as a valid body of an if / else / while / ... statement.
Adds the ability for function arguments to have default values. This
works for standard functions as well as arrow functions. Default values
are not printed in a <function>.toString() call, as nodes cannot print
their source string representation.
Instead of having fprintf()s all over the place we can now use
syntax_error("message") or syntax_error("message", line, column).
This takes care of a consistent format, appending a newline and getting
the line number and column of the current token if the last two params
are omitted.
Implement the syntax and behavor necessary to support array literals
such as [...[1, 2, 3]]. A type error is thrown if the target of the
spread operator does not evaluate to an array (though it should
eventually just check for an iterable).
Note that the spread token's name is TripleDot, since the '...' token is
used for two features: spread and rest. Calling it anything involving
'spread' or 'rest' would be a bit confusing.
It turns out "delete" is actually a unary op :)
This patch implements deletion of object properties, it doesn't yet
work for casually deleting properties from the global object.
When deleting a property from an object, we switch that object to
having a unique shape, no longer sharing shapes with others.
Once an object has a unique shape, it no longer needs to care about
shape transitions.
This is required for template literals - we're not quite there yet, but at
least the parser can now tell us when this token is encountered -
currently this yields "Unexpected token Invalid". Not really helpful.
The character is a "backtick", but as we already have
TokenType::{StringLiteral,RegexLiteral} this seemed like a fitting name.
This also enables syntax highlighting for template literals in the js
REPL and LibGUI's JSSyntaxHighlighter.
"var" declarations are hoisted to the nearest function scope, while
"let" and "const" are hoisted to the nearest block scope.
This is done by the parser, which keeps two scope stacks, one stack
for the current var scope and one for the current let/const scope.
When the interpreter enters a scope, we walk all of the declarations
and insert them into the variable environment.
We don't support the temporal dead zone for let/const yet.
Many other parsers call it with this name.
Also Type can be confusing in this context since the DeclarationType is
not the type (number, string, etc.) of the variables that are being
declared by the VariableDeclaration.
While debugging test failures, it's pretty frustrating to have to go do
printf debugging to figure out what test is failing right now. While
watching your JS Raytracer stream it seemed like this was pretty
furstrating as well. So I wanted to start working on improving the
diagnostics here.
In the future I hope we can eventually be able to plumb the info down
to the Error classes so any thrown exceptions will contain enough
metadata to know where they came from.
This patch adds support in the parser and interpreter for this:
var a = 1, b = 2, c = a + b;
VariableDeclaration is now a sequence of VariableDeclarators. :^)
The Lexer and AST already have all the functionality required in place,
so this is just updating Parser::match_secondary_expression() and
Parser::parse_expression() to handle TokenType::{Ampersand,Pipe,Caret},
as well as adding some tests.