...to avoid allocating a copy of glyph run for painting commands. We
can't simply save pointers to a glyph run in layout/paintable tree
because it should be safe to deallocate layout and paintable trees
after painting commands are recorded, if in the future we decide to
move command execution to a separate thread.
This is a part of refactoring towards making the paintable tree
independent of the layout tree. Now, instead of transferring text
fragments from the layout tree to the paintable tree during the layout
commit phase, we allocate separate PaintableFragments that contain only
the information necessary for painting. Doing this also allows us to
get rid LineBoxes, as they are used only during layout.
Fragments contained by the inline node should be painted in the
foreground phase for this node, instead of being painted as a part of
the containing PaintableWithLines. This change implements that by
marking all fragments contained by inline nodes so they can be skipped
while painting the content of PaintableWithLines. This is an ugly way,
and instead, we should make InlinePaintables own all fragments
contained by them.
This change fixes a problem that we should not call `to_px()` to
resolve any length or percentage values during paintables traversal
because that is supposed to happen while performing layout.
Also it improves performance because before we were resolving border
radii during each painting phase but now it happens only once during
layout.
Previously, we determined the positions of glyphs for each text run at
the time of painting, which constituted a significant portion of the
painting process according to profiles. However, since we already go
through each glyph to figure out the width of each fragment during
layout, we can simultaneously gather data about the position of each
glyph in the layout phase and utilize this information in the painting
phase.
I had to update expectations for a couple of reference tests. These
updates are due to the fact that we now measure glyph positions during
layout using a 1x font, and then linearly scale each glyph's position
to device pixels during painting. This approach should be acceptable,
considering we measure a fragment's width and height with an unscaled
font during layout.
According to CSS Inline Layout Module Level 3 § 2.2 Step 1. atomic
inlines should be layed out in a line box based on their margin box.
However, up until this patch we were unconditionally considering only
the border box during line box height calculation. This made us
essentially drop all vertical margins for atomic inlines.
This fixes a few sizing issues too. The page size is now correct in most
cases! \o/
We get to remove some of the `to_type<>()` shenanigans, though it
reappears in some other places.
This avoids a bunch of unnecessary work in Painter which not only took
time, but sometimes also led to alignment issues. draw_text_run() will
draw the text where we tell it, and that's it.
We now distribute the line-height evenly between the space above and
below inline-level boxes. This noticeably improves our baseline
alignment in many cases.
Note that the "vertical-align: <length>" case is quite awkward, as the
extra height added by the offset baseline must count towards the line
box height.
There's a lot of room for improvement here, but this makes the buckets
container on Acid3 show up in the right place, with the right size.
Using WeakPtr to remember which LineBoxFragment owns which Box was
imposing some annoying constraints on the layout code. Importantly, it
was forcing us to heap-allocate fragments, which makes it much harder to
clone a FormattingState.
This patch replaces the WeakPtr with a coordinate system instead.
Fragments are referred to by their line box index + fragment index
within the line box.
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *