This commit adds support for the most bare bones version of async
functions, support for async generator functions, async arrow functions
and await expressions are TODO.
By replacing this VERIFY with a thrown Error we no longer crash when
calling a generator function in the AST interpreter. This allows us to
more gracefully handle situation which have not been implemented yet.
In particular this helps the libjs-test262-runner since it can now
continue on to the next tests instead of having the entire process end.
This one is a bit unusual, so to clarify:
Previously, callers of get_iterator_values() would supply a callback
that would return an IterationDecision, and an enum to indicate whether
iterator_close() should be invoked upon IterationDecision::Break.
Now, use of both those enums is removed, and callers must return an
Optional<Completion>. If a Completion is provided, the iterator will be
closed, and that completion will be returned from get_iterator_values.
Otherwise, once the iterator is exhausted, a default-initialized
Completion will be returned.
This is necessary as we might have to perform named evaluation with the
field name.
Ideally we would also skip some setup parts of the function like
function_declaration_instantiation however this would require bigger
changes to ECMAScriptFunctionObject.
This patch implements:
- Spec compliant [[Call]] and [[Construct]] internal slots, as virtual
FunctionObject::internal_{call,construct}(). These effectively replace
the old virtual FunctionObject::{call,construct}(), but with several
advantages:
- Clear and consistent naming, following the object internal methods
- Use of completions
- internal_construct() returns an Object, and not Value! This has been
a source of confusion for a long time, since in the spec there's
always an Object returned but the Value return type in LibJS meant
that this could not be fully trusted and something could screw you
over.
- Arguments are passed explicitly in form of a MarkedValueList,
allowing manipulation (BoundFunction). We still put them on the
execution context as a lot of code depends on it (VM::arguments()),
but not from the Call() / Construct() AOs anymore, which now allows
for bypassing them and invoking [[Call]] / [[Construct]] directly.
Nothing but Call() / Construct() themselves do that at the moment,
but future additions to ECMA262 or already existing web specs might.
- Spec compliant, standalone Call() and Construct() AOs: currently the
closest we have is VM::{call,construct}(), but those try to cater to
all the different function object subclasses at once, resulting in a
horrible mess and calling AOs with functions they should never be
called with; most prominently PrepareForOrdinaryCall and
OrdinaryCallBindThis, which are only for ECMAScriptFunctionObject.
As a result this also contains an implicit optimization: we no longer
need to create a new function environment for NativeFunctions - which,
worth mentioning, is what started this whole crusade in the first place
:^)
Most switch statements don't have any lexically scoped declarations,
so let's avoid allocating an environment in the common case where we
don't have to.
This commit partially reverts "LibJS: Make accessing the current
function's arguments cheaper".
While the change passed all the currently passing test262 tests, it
seems to have _some_ flaw that silently breaks with some real-world
websites.
As the speedup with negligible at best, let's just revert it until we
can implement it more correctly.
We now propagate this flag to FunctionDeclaration, and then also into
ECMAScriptFunctionObject.
This will be used to disable optimizations that aren't safe in the
presence of direct eval().
Instead of going through an environment record, make arguments of the
currently executing function generate references via the argument index,
which can later be resolved directly through the ExecutionContext.
This patch introduces the "environment coordinate" concept, which
encodes the distance from a variable access to the binding it ends up
resolving to.
EnvironmentCoordinate has two fields:
- hops: The number of hops up the lexical environment chain we have
to make before getting to the resolved binding.
- index: The index of the resolved binding within its declarative
environment record.
Whenever a variable lookup resolves somewhere inside a declarative
environment, we now cache the coordinates and reuse them in subsequent
lookups. This is achieved via a coordinate cache in JS::Identifier.
Note that non-strict direct eval() breaks this optimization and so it
will not be performed if the resolved environment has been permanently
screwed by eval().
This makes variable access *significantly* faster. :^)
The idea here is simple: If the block statement doesn't contain any
lexical declarations, we don't need to allocate, initialize and
eventually garbage collect a new declarative environment.
This even makes lookups across nested blocks slightly faster as we don't
have to traverse a chain of empty environments anymore - instead, the
execution context just stores the outermost non-empty one.
This doesn't speed up test-js considerably, but has a noticeable effect
on test262 and real-world web content :^)
This gives FunctionNode a "might need arguments object" boolean flag and
sets it based on the simplest possible heuristic for this: if we
encounter an identifier called "arguments" or "eval" up to the next
(nested) function declaration or expression, we won't need an arguments
object. Otherwise, we *might* need one - the final decision is made in
the FunctionDeclarationInstantiation AO.
Now, this is obviously not perfect. Even if you avoid eval, something
like `foo.arguments` will still trigger a false positive - but it's a
start and already massively cuts down on needlessly allocated objects,
especially in real-world code that is often minified, and so a full
"arguments" identifier will be an actual arguments object more often
than not.
To illustrate the actual impact of this change, here's the number of
allocated arguments objects during a full test-js run:
Before:
- Unmapped arguments objects: 78765
- Mapped arguments objects: 2455
After:
- Unmapped arguments objects: 18
- Mapped arguments objects: 37
This results in a ~5% speedup of test-js on my Linux host machine, and
about 3.5% on i686 Serenity in QEMU (warm runs, average of 5).
The following microbenchmark (calling an empty function 1M times) runs
25% faster on Linux and 45% on Serenity:
function foo() {}
for (var i = 0; i < 1_000_000; ++i)
foo();
test262 reports no changes in either direction, apart from a speedup :^)