These allow us to binary search the code point compositions based on
the first code point being combined, which makes the search close to
O(log N) instead of O(N).
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
The only user is currently String::equals_ignoring_case, but LibRegex
will need to do the same case-folded comparison with UTF-32 data. As it
turns out, the comparison works with all Unicode view types without much
fuss.
https://unicode.org/versions/Unicode15.1.0/
This update includes a new set of code point properties, Indic Conjunct
Break. These may have the values Consonant, Linker, or Extend. These are
used in text segmentation to prevent breaking on some extended grapheme
cluster sequences.
Similar to commit 0652cc4, we now generate 2-stage lookup tables for
case conversion information. Only about 1500 code points are actually
cased. This means that case information is rather highly compressible,
as the blocks we break the code points into will generally all have no
casing information at all.
In total, this change:
* Does not change the size of libunicode.so (which is nice because,
generally, the 2-stage lookup tables are expected to trade a bit
of size for performance).
* Reduces the runtime of the new benchmark test case added here from
1.383s to 1.127s (about an 18.5% improvement).
We started generating this data in commit 0505e03, but it was unused.
It's still not used, so let's remove it, rather than bloating the size
of libunicode.so with unused data. If we need it in the future, it's
trivial to add back.
Note we *have* always used the block name data from that commit, and
that is still present here.
We currently fully casefold the left- and right-hand sides to compare
two strings with case-insensitivity. Now, we casefold one code point at
a time, storing the result in a view for comparison, until we exhaust
both strings.
This was preventing some unqualified emoji sequences from rendering
properly, such as the custom SerenityOS flag. We rendered the flag
correctly when given the fully qualified sequence:
U+1F3F3 U+FEOF U+200D U+1F41E
But were not detecting the unqualified sequence as an emoji when also
filtering for emoji-presentation sequences:
U+1F3F3 U+200D U+1F41E
This adds an option to only detect emoji that should always present as
emoji. For example, the copyright symbol (unless followed by an emoji
presentation selector) should render as text.
Emoji sequences in the grapheme segmentation spec are a bit tricky:
\p{Extended_Pictographic} Extend* ZWJ × \p{Extended_Pictographic}
Our current strategy of tracking a boolean to indicate if we are in an
emoji sequence was causing us to break up emoji made of multiple sub-
sequences. For example, in the "family: man, woman, girl, boy" sequence:
U+1F468 U+200D U+1F469 U+200D U+1F467 U+200D U+1F466
We would break at indices 0 (correctly) and 6 (incorrectly).
Instead of tracking a boolean, it's quite a bit simpler to reason about
emoji sequences by just skipping past them entirely. Note that in cases
like the above emoji, we skip one sub-sequence at a time.
For example the words "can't" and "32.3" should not have boundaries
detected on the "'" and "." code points, respectively.
The String test cases fixed here are because "b'ar" is now considered
one word.
Similar to commit 6d710eeb43. Rather than
pick-and-chosing what to support, let's just support all encodings now,
as it is trivial. For example, LibGUI will want the UTF-32 overloads.
The Unicode spec defines much more complicated caseless matching
algorithms in its Collation spec. This implements the "basic" case
folding comparison.
Case folding rules have a similar mapping style as special casing rules,
where one code point may map to zero or more case folding rules. These
will be used for case-insensitive string comparisons. To see how case
folding can differ from other casing rules, consider "ß" (U+00DF):
>>> "ß".lower()
'ß'
>>> "ß".upper()
'SS'
>>> "ß".title()
'Ss'
>>> "ß".casefold()
'ss'
And remove links that aren't adding much value but will often get out of
date (i.e. links to UCD files, which are already all listed in
unicode_data.cmake).
Unicode declares that to titlecase a string, the first cased code point
after each word boundary should be transformed to its titlecase mapping.
All other codepoints are transformed to their lowercase mapping.
Since AK can't refer to LibUnicode directly, the strategy here is that
if you need case transformations, you can link LibUnicode and receive
them. If you try to use either of these methods without linking it, then
you'll of course get a linker error (note we don't do any fallbacks to
e.g. ASCII case transformations). If you don't need these methods, you
don't have to link LibUnicode.