This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
This commit removes DeprecatedString's "null" state, and replaces all
its users with one of the following:
- A normal, empty DeprecatedString
- Optional<DeprecatedString>
Note that null states of DeprecatedFlyString/StringView/etc are *not*
affected by this commit. However, DeprecatedString::empty() is now
considered equal to a null StringView.
`consume_until(foo)` stops before foo, and so does
`ignore_until(Predicate)`, so let's make the other `ignore_until()`
overloads consistent with that so they're less confusing.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Before this commit all consume_until overloads aside from the Predicate
one would consume (and ignore) the stop char/string, while the
Predicate overload would not, in order to keep behaviour consistent,
the other overloads no longer consume the stop char/string as well.
When we run the Preprocessor from the CppComprehensionEngine of
the language server, we don't want the preprocessor to crash if it
encounters an invalid preprocessor statement (for example, an #endif
statement without an accompanying previous #if statement).
To achieve this, this commit adds an "ignore_invalid_statements" flag
to the preprocessor which is set by the CppComprehensionEngine.
Fixes#11064.
Previously, the preprocessor first split the source into lines, and then
processed and lexed each line separately.
This patch makes the preprocessor first lex the source, and then do the
processing on the tokenized representation.
This generally simplifies the code, and also fixes an issue we
previously had with multiline comments (we did not recognize them
correctly when processing each line separately).
The preprocessor now understands when a function-like macro is defined,
and can also parse calls to such macros.
The actual evaluation of function-like macros will be done in a
separate commit.
When the preprocessor encounters an #include statement it now adds
the preprocessor definitions that exist in the included header to its
own set of definitions.
We previously only aggregated the definitions from headers after
processing the source, which was less correct. (For example, there
could be an #ifdef that depends on a definition from another header).
We now call Preprocessor::process_and_lex() and pass the result to the
parser.
Doing the lexing in the preprocessor will allow us to maintain the
original position information of tokens after substituting definitions.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Under some circumstances we need to ignore unsupported preprocessor
keywords instead of crashing the processing, for example during live
parsing in HackStudio.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.