Before of this patch, we supported two methods to address a boot device:
1. Specifying root=/dev/hdXY, where X is a-z letter which corresponds to
a boot device, and Y as number from 1 to 16, to indicate the partition
number, which can be omitted to instruct the kernel to use a raw device
rather than a partition on a raw device.
2. Specifying root=PARTUUID: with a GUID string of a GUID partition. In
case of existing storage device with GPT partitions, this is most likely
the safest option to ensure booting from persistent storage.
While option 2 is more advanced and reliable, the first option has 2
caveats:
1. The string prefix "/dev/hd" doesn't mean anything beside a convention
on Linux installations, that was taken into use in Serenity. In Serenity
we don't mount DevTmpFS before we mount the boot device on /, so the
kernel doesn't really access /dev anyway, so this convention is only a
big misleading relic that can easily make the user to assume we access
/dev early on boot.
2. This convention although resemble the simple linux convention, is
quite limited in specifying a correct boot device across hardware setup
changes, so option 2 was recommended to ensure the system is always
bootable.
With these caveats in mind, this commit tries to fix the problem with
adding more addressing options as well as to remove the first option
being mentioned above of addressing.
To sum it up, there are 4 addressing options:
1. Hardware relative address - Each instance of StorageController is
assigned with a index number relative to the type of hardware it handles
which makes it possible to address storage devices with a prefix of the
commandset ("ata" for ATA, "nvme" for NVMe, "ramdisk" for Plain memory),
and then the number for the parent controller relative hardware index,
another number LUN target_id, and a third number for LUN disk_id.
2. LUN address - Similar to the previous option, but instead we rely on
the parent controller absolute index for the first number.
3. Block device major and minor numbers - by specifying the major and
minor numbers, the kernel can simply try to get the corresponding block
device and use it as the boot device.
4. GUID string, in the same fashion like before, so the user use the
"PARTUUID:" string prefix and add the GUID of the GPT partition.
For the new address modes 1 and 2, the user can choose to also specify a
partition out of the selected boot device. To do that, the user needs to
append the semicolon character and then add the string "partX" where X
is to be changed for the partition number. We start counting from 0, and
therefore the first partition number is 0 and not 1 in the kernel boot
argument.
Instead of letting the user to determine whether framebuffer devices
will be created (which is useless because they are gone by now), let's
simplify the flow by allowing the user to choose between full, limited
or disabled functionality. The determination happens only once, so, if
the user decided to disable graphics support, the initialize method
exits immediately. If limited functionality is chosen, then a generic
DisplayConnector is initialized with the preset framebuffer resolution,
if present, and then the initialize method exits. As a default, the code
proceeds to initialize all drivers as usual.
This change allow the user to request the kernel to not use any PCI
resources/devices at all.
Also, don't try to initialize devices that rely on PCI if disabled.
As we don't currently support MSI(X) interrupts, it could be an issue
to boot on some newer hardware. NVMe devices support polling mode
where the driver actively polls for completion instead of waiting for
an interrupt.
The URLs of the form `help://man/<section>/<page>` link to another help
page inside the help application. All previous relative page links are
replaced by this new form. This doesn't change any behavior but it looks
much nicer :^)
Note that man doesn't handle these new links, but the previous relative
links didn't work either.
This allows forcing the use of only the framebuffer set up by the
bootloader and skips instantiating devices for any other graphics
cards that may be present.
The document describes the implications of enabling and disabling that
option on the ability to enable SMP mode, and describes the requirements
for enabling IOAPIC mode even without enabling SMP mode.
'bootmode' now only controls which set of services are started by
SystemServer, so it is more appropriate to rename it to system_mode, and
no longer validate it in the Kernel.
Bootmode used to control framebuffers, panic behavior, and SystemServer.
This patch factors framebuffer control into a separate flag.
Note that the combination 'bootmode=self-test fbdev=on' leads to
unexpected behavior, which can only be fixed in a later commit.
These interfaces are broken for about 9 months, maybe longer than that.
At this point, this is just a dead code nobody tests or tries to use, so
let's remove it instead of keeping a stale code just for the sake of
keeping it and hoping someone will fix it.
To better justify this, I read that OpenBSD removed loadable kernel
modules in 5.7 release (2014), mainly for the same reason we do -
nobody used it so they had no good reason to maintain it.
Still, OpenBSD had LKMs being effectively working, which is not the
current state in our project for a long time.
An arguably better approach to minimize the Kernel image size is to
allow dropping drivers and features while compiling a new image.