This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
Instead of using a special case of the annotate_mapping syscall, let's
introduce a new prctl option to disallow further annotations of Regions
as new syscall Region(s).
To further protect all virtual memory regions of the loaded libraries,
don't allow to mutate these regions both in changing their annotations
nor the protection bits.
This syscall will be used later on to ensure we can declare virtual
memory mappings as immutable (which means that the underlying Region is
basically immutable for both future annotations or changing the
protection bits of it).
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Employ the same hardening that glibc and the Linux kernel use for
generating stack guards: zero the first byte of the guard such that
if C-style string functions read out of bounds on the stack, we do
not overwrite or potentially leak the stack guard.
We used size_t, which is a type that is guarenteed to be large
enough to hold an array index, but uintptr_t is designed to be used
to hold pointer values, which is the case of stack guards.
Both users of this function now have to do their resolving separately
before anyways, so let's just drop the resolving part inside the
function and require absolute paths to be fed in instead.
Having two functions that are named the same and whose behavior
regarding "should probably get a full path" and "does explicitly not
require a full path" is quite confusing, especially since that
difference is dictated through the other passed arguments.
Even though this almost certainly wouldn't run properly even if we had
a working kernel for AARCH64 this at least lets us build all the
userland binaries.
This adds a "temporary promises for the dynamic-linker" flag ('-d')
to the "pledge" utility.
Example usage:
pledge -d -p "stdio rpath" id
Without the '-d' flag, id would crash because the dynamic linker
requires 'prot_exec'.
When this flag is used and the program to be run is dynamically linked,
"pledge" adds promises that are required by the dynamic linker
to the promise set provided by the user.
The dynamic linker will later "give up" the pledge promises it no
longer requires.
This commit moves the length calculations out to be directly on the
StringView users. This is an important step towards the goal of removing
StringView(char const*), as it moves the responsibility of calculating
the size of the string to the user of the StringView (which will prevent
naive uses causing OOB access).
Once again, QEMU creates threads while running its constructors, which
is a recipe for disaster if we switch out the stack guard while that is
already running in the background.
To solve that, move initialization to our LibC initialization stage,
which is before any actual external initialization code runs.
This commit has no behavior changes.
In particular, this does not fix any of the wrong uses of the previous
default parameter (which used to be 'false', meaning "only replace the
first occurence in the string"). It simply replaces the default uses by
String::replace(..., ReplaceMode::FirstOnly), leaving them incorrect.
Previously we would just tightly pack the different libraries' TLS
segments together, but that is incorrect, as they might require some
kind of minimum alignment for their TLS base address.
We now plumb the required TLS segment alignment down to the TLS block
linear allocator and align the base address down to the appropriate
alignment.
The original heuristic of "a library being in `s_global_objects` means
that it was fully initialized already" doesn't hold up anymore since we
changed the loading order. This was causing us to skip parts of the
initialization of dependency libraries when running dlopen (since it was
the only user of that setting).
Instead, set a flag after we run stage 4 (which is the "run the global
initializers" stage) and check that flag when determining unfinished
dependencies. This entirely replaces the `skip_global_objects` logic.
We previously trusted the `map` part in `map_library` too much, and
assumed that this would already lock in the binary at its final place.
However, the `map()` function of the loader was only called in
`load_main_library`, which ran only right before jumping to the
entrypoint.
Make our binary loading a bit more stable by actually mapping the binary
right after we read its information, and only do the linking right
before jumping to the entrypoint.
Using the main executable basename produces the wrong $ORIGIN processing
for libraries that are secondary dependencies of the main executable,
or dependencies of an object loaded via dlopen.
IFUNC is a GNU extension to the ELF standard that allows a function to
have multiple implementations. A resolver function has to be called at
load time to choose the right one to use. The PLT will contain the entry
to the resolved function, so branching and more indirect jumps can be
avoided at run-time.
This mechanism is usually used when a routine can be made faster using
CPU features that are available in only some models, and a fallback
implementation has to exist for others.
We will use this feature to have two separate memset implementations for
CPUs with and without ERMS (Enhanced REP MOVSB/STOSB) support.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
Consider the situation where two shared libraries libA and libB, both
depending (as in having a NEEDED dtag) on libC. libA is first
dlopen()-ed, which produces libC to be mapped and linked. When libB is
dlopen()-ed the DynamicLinker would re-map and re-link libC though,
causing any previous references to its old location to be invalid. And
if libA's PLT has been patched to point to libC's symbols, then any
further invocations to libA will cause the code to jump to a virtual
address that isn't mapped anymore, therefore causing a crash. This
situation was reported in #10014, although the setup was more convolved
in the ticket.
This commit fixes the issue by distinguishing between a main program
loading being performed by Loader.so, and a dlopen() call. The main
difference between these two cases is that in the former the
s_globals_objects maps is always empty, while in the latter it might
already contain dependencies for the library being dlopen()-ed. Hence,
when collecting dependencies to map and link, dlopen() should skip those
that are present in the global map to avoid the issue described above.
With this patch the original issue seen in #10014 is gone, with all
python3 modules (so far) loading correctly.
A unit test reproducing a simplified issue is also included in this
commit. The unit test includes the building of two dynamic libraries A
and B with both depending on libline.so (and B also depending on A); the
test then dlopen()s libA, invokes one its function, then does the same
with libB.
When loading libraries, it is required that each library uses the same
instance of each symbol, and that they use the one from the executable
if any. This is barely noticeable if done incorrectly; except that it
completely breaks RTTI on Clang. This switches the hash map to be
ordered; tested to work for Clang by @Bertaland
The System V ABI for both x86 and x86_64 requires that the stack pointer
is 16-byte aligned on entry. Previously we did not align the stack
pointer properly.
As far as "main" was concerned the stack alignment was correct even
without this patch due to how the C++ _start function and the kernel
interacted, i.e. the kernel misaligned the stack as far as the ABI
was concerned but that misalignment (read: it was properly aligned for
a regular function call - but misaligned in terms of what the ABI
dictates) was actually expected by our _start function.
Previously, we assumed that the `.text` segment was loaded at vaddr 0 in
all dynamic libraries, so we used the dynamic object's base address with
`msyscall`. This did not work with the LLVM toolchain, as it likes to
shuffle these segments around.
This now also handles the case when there are multiple text segments for
some reason correctly.
The LexicalPath instance methods dirname(), basename(), title() and
extension() will be changed to return StringView const& in a further
commit. Due to this, users creating temporary LexicalPath objects just
to call one of those getters will recieve a StringView const& pointing
to a possible freed buffer.
To avoid this, static methods for those APIs have been added, which will
return a String by value to avoid those problems. All cases where
temporary LexicalPath objects have been used as described above haven
been changed to use the static APIs.