To prepare for placing all CLDR generated data in a new library,
LibLocale, this moves the code generators for the CLDR data to the
LibLocale subfolder.
Currently, the unique string lists are stored in the initialized data
sections of their shared libraries. In order to move the data to the
read-only section, generate the strings using RLE arrays.
We generate two arrays: the first is the RLE data itself, the second is
a list of indices into the RLE array for each string. We then generate a
decoding method to convert an RLE string to a StringView.
This isn't called out in TR-35, but before ICU even looks at CLDR data,
it adds a hard-coded set of default patterns to each locale's calendar.
It has done this since 2006 when its DateTimeFormat feature was first
created. Several test262 tests depend on this, which under ECMA-402,
falls into "implementation defined" behavior. For compatibility, we
can do the same in LibUnicode.
In the generated unique string list, index 0 is the empty string, and is
used to indicate a value doesn't exist in the CLDR. Check for this
before returning an empty calendar symbol.
For example, an upcoming commit will add the fixed day period "noon",
which not all locales support.
Commit ec7d535 only partially handled the case of flexible day periods
rolling over midnight, in that it only worked for hours after midnight.
For example, the en locale defines a day period range of [21:00, 06:00).
The previous method of adding 24 hours to the given hour would change
e.g. 23:00 to 47:00, which isn't valid.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
These are mostly minor mistakes I've encountered while working on the
removal of StringView(char const*). The usage of builder.put_string over
Format<FormatString>::format is preferrable as it will avoid the
indirection altogether when there's no formatting to be done. Similarly,
there is no need to do format(builder, "{}", number) when
builder.put_u64(number) works equally well.
Additionally a few Strings where only constant strings were used are
replaced with StringViews.
This includes:
* The minimum number of days in a week for that week to count as the
first week of a new year.
* The day to be shown as the first day of the week in a calendar.
* The start/end days of the weekend.
Like the existing hour cycle data, week data is presented per-region in
the CLDR, rather than per-locale. The method to add likely subtags to a
locale to perform region lookups is the same.
The list of regions in the CLDR for hour cycle, minimum days, first day,
and weekend days are quite different. So rather than changing the
existing HourCycleRegion enum to a generic Region enum, we generate
separate enums for each of the week data fields. This allows each lookup
into these fields to remain simple array-based index access, without any
"jumps" for regions that don't have CLDR data for a field.
This commit has no behavior changes.
In particular, this does not fix any of the wrong uses of the previous
default parameter (which used to be 'false', meaning "only replace the
first occurence in the string"). It simply replaces the default uses by
String::replace(..., ReplaceMode::FirstOnly), leaving them incorrect.
BCP 47 will be the single source of truth for known calendar and number
system keywords, and their aliases (e.g. "gregory" is an alias for
"gregorian"). Move the generation of available keywords to where we
parse the BCP 47 data, so that hard-coded aliases may be removed from
other generators.
Our generator is currently preferring the DST variant of the time zone
display names over the non-DST variant. LibTimeZone currently does not
have DST support, and operates in a mode that basically assumes DST does
not exist. Swap the display names for now just to be consistent until we
have DST support.
Note we will need to generate both of these variants and select the
appropriate one at runtime once we have DST support.
This adds an API to use LibTimeZone to convert a time zone such as
"America/New_York" to a GMT offset string like "GMT-5" (short form) or
"GMT-05:00" (long form).
The generate_mapping helper generates a series of structs like:
Array<SomeType, 1> s_mapping_key_0 {};
Array<SomeType, 2> s_mapping_key_1 {};
Array<SomeType, 3> s_mapping_key_2 {};
Array<Span<SomeType const>> s_mapping { {
s_mapping_key_0.span(),
s_mapping_key_1.span(),
s_mapping_key_2.span(),
} };
Where the names of the struct were generated by the format_mapping_name
lambda inside the helper. Rather than this lambda making assumptions on
how each generator wants to name its structs, add a parameter for the
caller to provide a naming formatter.
This is because the TimeZoneData generator will want pretty specific
identifier formatting rules.
LibUnicode no longer needs to generate a list of time zone names that it
parsed from metaZones.json. We can defer to the TZDB for a golden list
of time zones.
The generator parses metaZones.json to form a mapping of meta zones to
time zones (AKA "golden zone" in TR-35). This parser errantly assumed
this was a 1-to-1 mapping.
In Unicode::get_time_zone_name(), we don't need to require that the time
zone is UTC for long- and short-style name lookups. This is required for
other styles, because they will depend on TZDB data - so move the VERIFY
to that scope.
When searching for the locale-specific flexible day period for a given
hour, we were neglecting to handle cases where the period crosses 00:00.
For example, the en locale defines a day period range of [21:00, 06:00).
When given the hour of 05:00, we were checking if (21 <= 5 && 5 < 6),
thus not recognizing that the hour falls in that period.
ECMA-402 now supports short-offset, long-offset, short-generic, and
long-generic time zone name formatting. For example, in the en-US locale
the America/Eastern time zone would be formatted as:
short-offset: GMT-5
long-offset: GMT-05:00
short-generic: ET
long-generic: Eastern Time
We currently only support the UTC time zone, however. Therefore, this
very minimal implementation does not consider GMT offset or generic
display names. Instead, the CLDR defines specific strings for UTC.
The variable `s_time_zone_list_index_type` seems to be unused (detected
when compiling with clang), and it seems logical to bind it even it if
it is not used for now.
Similar to commit 2a7f36b392, this change moves the generated
CalendarSymbol enumeration to the public LibUnicode/NumberFormat.h
header with a pre-defined set of symbols that we need. This is to
prepare for uniquely generating the CalendarSymbols structure.
Each of the 374 generated calendars include 4 sets of symbols, each of
which have 3 lists of symbols (narrow, short, long). Of these 4488
lists, only 819 are unique.
In the CLDR, there aren't "night" values, there are "night1" & "night2"
values. This is for locales which use a different name for nighttime
depending on the hour. For example, the ja locale uses "夜" between the
hours of 19:00 and 23:00, and "夜中" between the hours of 23:00 and
04:00. Our CLDR parser is currently ignoring "night2", so this rename
is to prepare for that.
We could probably come up with better names, but in the end, the API in
LibUnicode will be such that outside callers won't even see Night1, etc.