These instances were detected by searching for files that include
AK/Format.h, but don't match the regex:
\\b(CheckedFormatString|critical_dmesgln|dbgln|dbgln_if|dmesgln|FormatBu
ilder|__FormatIfSupported|FormatIfSupported|FormatParser|FormatString|Fo
rmattable|Formatter|__format_value|HasFormatter|max_format_arguments|out
|outln|set_debug_enabled|StandardFormatter|TypeErasedFormatParams|TypeEr
asedParameter|VariadicFormatParams|v_critical_dmesgln|vdbgln|vdmesgln|vf
ormat|vout|warn|warnln|warnln_if)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any formatting functions.
Observe that this revealed that Userland/Libraries/LibC/signal.cpp is
missing an include.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
We now layout foreign objects as if they form a nested block formatting
context. This probably isn't the most correct way to do this, but it's
a start.
When the <svg> box has a definite size, we use the same size for its
geometry-box descendants. This was using the presence of `width` and
`height` attributes on the <svg> element as evidence that the size was
definite, but this made no sense. We now check if it's actually
definite instead.
This is a big and messy change, and here's the gist:
- AvaliableSpace is now 2x AvailableSize (width and height)
- Layout algorithms are redesigned around the idea of available space
- When doing layout across nested formatting contexts, the parent
context tells the child context how much space is available for the
child's root box in both axes.
- "Available space" replaces "containing block width" in most places.
- The width and height in a box's UsedValues are considered to be
definite after they're assigned to. Marking something as having
definite size is no longer a separate step,
This probably introduces various regressions, but the big win here is
that our layout system now works with available space, just like the
specs are written. Fixing issues will be much easier going forward,
since you don't need to do nearly as much conversion from "spec logic"
to "LibWeb logic" as you previously did.
Instead of formatting contexts flailing around to figure out from the
"inside" how much space is available on the "outside", we should
provide the amount of available space in both axes as an input to run().
This basically means that when something creates a nested formatting
context, the parent context is responsible for telling the nested context
how much space is available for layout. This information is provided
immediately when invoking run().
Note that this commit doesn't pass accurate values in all cases yet.
This first step just makes it build, and passes available values in some
cases where getting them was trivial.
This function should return the automatic height of the formatting
context's root box.
Until now, we've been relying on some magical handshakes between parent
and child context, when negotiating the height of child context root
boxes. This is a step towards something more reasonable.
Instead of using Optional<LengthPercentage>, we now use LengthPercentage
for these values. The initial values are all `auto`.
This avoids having to check `has_value()` in a ton of places.
This patch begins the support for the 'view-box' attribute that can be
attached to <svg>'s.
The FormattingContext determines the size of the Element according to
the specified 'width' and 'height' or if they are not given by the
'viewbox' or by the bounding box of the path if nothing is specified.
When we try to paint a SVG Path that belongs to a <svg> that has the
'view-box' and a specified 'height'/'width', all the parts of the path
get scaled/moved accordingly.
There probably are many edge cases and bugs still to be found, but this
is a nice start. :^)
This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
This makes the selected-in-the-inspector outline appear in the right
place. We take the stroke-width into account when producing the
bounding box, which makes the fit nice and snug. :^)
This property represents the CSS content size, so let's reduce ambiguity
by using the spec terminology.
We also bring a bunch of related functions along for the ride.
Instead of trying to layout SVG boxes as if they are regular CSS boxes,
let's invent an "SVG formatting context" and let it manage SVG boxes.
To facilitate this, Layout::SVGBox no longer inherits from ReplacedBox,
and is instead a simple, "inline-block" style BlockBox.