Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
In a subclass of Cell, we cannot use Cell::vm() before the base Cell
object itself is constructed. Use the Realm's VM instead.
This was caught by UBSAN with vptr sanitation enabled.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
This is needed so that the allocated NativeFunction receives the correct
realm, usually forwarded from the Object's initialize() function, rather
than using the current realm.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
There was an awful lot of JS::Value <-> double conversion going on, even
through these AOs only work with number values anyway.
They don't need a global object either as they won't allocate or throw,
that was simply to pass it to infallible calls of ToIntegerOrInfinity.
Other engines don't give NaN if there is at least one digit after the
dot for milliseconds. We were much stricter and required exactly three
digits.
But there is real world usage of different amounts of digits such as
discord having three extra trailing zeros.
First, this adds a constructor to the Date object to be created from a
plain double. This is a first step to removing Core::DateTime as the
basis for the Date object. A subsequent commit will remove the now-
unused data from the object.
Next, this implements the constructor in accordance to the spec. The
constructor when NewTarget is undefined no longer allocates a Date on
the heap. The other constructor properly uses recently created AOs to
handle time zone and ensure the created [[DateValue]] is valid. Other
methods on the constructor (Date.now) have not been touched yet.
Last, the prototype is reimplemented. Again, we use other AOs to handle
time zones and time clipping. Not all prototypes are fixed; most of them
are, but a few (e.g. Date.prototype.getTimezoneOffset) were not fixed,
but left in a mostly unimplemented state for another commit.
In all of the above, spec comments are added. This is a rather large
change; but it's tough to do any of these parts individually without
breaking everything else.
In commmit 7d2834344a, I think I combined
the definitions of the LocalTZA and UTC AOs in my head, and thought the
offset should be negated within LocalTZA. Instead, the offset should be
left untouched, and the UTC AO is responsible for doing the subtraction.
This fixes all failing Date.UTC test262 tests, which failed due to not
handling invalid input and evaluating inputs out of order. But this also
avoids using timegm(), which doesn't work on macOS for years before 1900
(they simply return -1 for those years).
Partially addresses #4651. Date.parse.js still fails.
Both at the same time because many of them call construct() in call()
and I'm not keen on adding a bunch of temporary plumbing to turn
exceptions into throw completions.
Also changes the return value of construct() to Object* instead of Value
as it always needs to return an object; allowing an arbitrary Value is a
massive foot gun.
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
The ECMAScript spec says that Date parsing can support any number of
implementation-defined date formats. So let's support a format commonly
used on the web. And let Core::DateTime do the heavy lifting. :^)
...for the non-success state. This fixes a crash when parsing dates with
the year -1, as we would assert successful parsing ("year != -1").
Mixing Optional and -1 seems worse and more complicated than just using
Optional for all the values, so I did that instead.
It is defined as follows:
21.4.3.1 Date.now ( )
https://tc39.es/ecma262/#sec-date.now
The now function returns the time value designating the UTC date and
time of the occurrence of the call to now.
"Time value" is defined as:
21.4.1.1 Time Values and Time Range
https://tc39.es/ecma262/#sec-time-values-and-time-range
An ECMAScript time value is a Number, either a finite integral
Number representing an instant in time to millisecond precision or
NaN representing no specific instant.
By flooring the value we match the behavior in the Temporal proposal's
Temporal.ZonedDateTime.prototype.epochMilliseconds getter:
4. Let ms be RoundTowardsZero(ℝ(ns) / 10^6).
With that being defined as:
13.30 RoundTowardsZero ( x )
https://tc39.es/proposal-temporal/#sec-temporal-roundtowardszero
1. Return the mathematical value that is the same sign as x and
whose magnitude is floor(abs(x)).
This is makes the last of the currently 15 Temporal tests in test262
work, which compares Temporal.now.instant() with Date.now() :^)
This removes all usages of the non-standard define_property helper
method and replaces all it's usages with the specification required
alternative or with define_direct_property where appropriate.
This makes the implicit run-time assertion in PropertyName::to_string()
into an explicit compile-time requirement, removes a wasteful FlyString
-> PropertyName -> FlyString construction from NativeFunction::create()
and allows setting the function name to a null string for anonymous
native functions.
Some of the code assumed that chars were always signed while that is
not the case on ARM hosts.
Also, some of the code tried to use EOF (-1) in a way similar to what
fgetc() does, however instead of storing the characters in an int
variable a char was used.
While this seemed to work it also meant that character 0xFF would be
incorrectly seen as an end-of-file.
Careful reading of fgetc() reveals that fgetc() stores character
data in an int where valid characters are in the range of 0-255 and
the EOF value is explicitly outside of that range (usually -1).
As mentioned on Discord earlier, we'll add these to all new functions
going forward - this is the backfill. Reasons:
- It makes you look at the spec, implementing based on MDN or V8
behavior is a no-go
- It makes finding the various functions that are non-compliant easier,
in the future everything should either have such a comment or, if it's
not from the spec at all, a comment explaining why that is the case
- It makes it easier to check whether a certain abstract operation is
implemented in LibJS, not all of them use the same name as the spec.
E.g. RejectPromise() is Promise::reject()
- It makes it easier to reason about vm.arguments(), e.g. when the
function has a rest parameter
- It makes it easier to see whether a certain function is from a
proposal or Annex B
Also:
- Add arguments to all functions and abstract operations that already
had a comment
- Fix some outdated section numbers
- Replace some ecma-international.org URLs with tc39.es