Both inode and block allocation operate on bitmap blocks and update
counters in the superblock and group descriptor.
Since we're here, also add some error propagation around this code.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
The way we read/write directories is very inefficient, and this doesn't
solve any of that. It does however reduce memory usage of directory
entry vectors by 25% which has nice immediate benefits.
We had two ways of creating a new Ext2FS inode. Either they were empty,
or they started with some pre-allocated size.
In practice, the pre-sizing code path was only used for new directories
and it didn't actually improve anything as far as I can tell.
This patch simplifies inode creation by simply always allocating empty
inodes. Block allocation and block list generation now always happens
on the same code path.
(mode & S_IFDIR) is not enough to check if "mode" is a directory,
we have to check all the bits in the S_IFMT mask.
Use the is_directory() helper to fix this bug.
..and allow implicit creation of KResult and KResultOr from ErrnoCode.
This means that kernel functions that return those types can finally
do "return EINVAL;" and it will just work.
There's a handful of functions that still deal with signed integers
that should be converted to return KResults.
This way, if something goes wrong, we get to keep the actual error.
Also, KResults are nodiscard, so we have to deal with that in Ext2FS
instead of just silently ignoring I/O errors(!)
When freeing an inode, we were checking if it's a directory *after*
wiping the inode metadata. This caused us to forget updating the block
group descriptor with the new directory count.
Before this change, truncating an Ext2FS inode to a larger size than it
was before would give you uninitialized on-disk data.
Fix this by zeroing out all the new space when doing an inode resize.
This is pretty naively implemented via Inode::write_bytes() and there's
lots of room for cleverness here in the future.
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
The modifications in this commit were automatically made using the
following command:
find . -name '*.cpp' -exec sed -i -E 's/dbg\(\) << ("[^"{]*");/dbgln\(\1\);/' {} \;
BlockBasedFileSystem::read_block method should get a reference of
a UserOrKernelBuffer.
If we need to force caching a block, we will call other method to do so.
clang trunk with -std=c++20 doesn't seem to properly look for an
aggregate initializer here when the type being constructed is a simple
aggregate (e.g. `struct Thing { int a; int b; };`). This template fails
to compile in a usage added 12/16/2020 in `AK/Trie.h`.
Both forms of initialization are supposed to call the
aggregate-initializers but direct-list-initialization delegating to
aggregate initializers is a new addition in c++20 that might not be
implemented yet.
If the inode's block list cache is empty, we forgot to assign the
result of computing the block list. The fact that this worked anyway
makes me wonder when we actually don't have a cache..
Thanks to szyszkienty for spotting this! :^)
e2fsck was complaining about blocks being allocated in an inode's list
of direct blocks while at the same time being free in the block bitmap.
It was easy to reproduce by creating a file with non-zero length and
then truncating it. This fixes the issue by clearing out the direct
block list when resizing a file to 0.
When computing the list of blocks to deallocate when freeing an inode,
we would stop collecting blocks after reaching the inode's block count.
Since we're getting rid of the inode, we need to also include the meta
blocks used by the on-disk block list itself.
The block group indices are 1-based for some reason. Because of that,
we were forgetting to check in the very last block group when doing
block allocation. This caused block allocation to fail even when the
superblock indicated that we had free blocks.
Fixes#3674.
First of all, this fixes a dumb info leak where we'd write kernel heap
addresses (StringImpl*) into userspace memory when reading a watcher.
Instead of trying to pass names to userspace, we now simply pass the
child inode index. Nothing in userspace makes use of this yet anyway,
so it's not like we're breaking anything. We'll see how this evolves.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
A change introduced in 5e01234 made it the resposibility of each
filesystem to have the file types returned from
'traverse_as_directory' match up with the DT_* types.
However, this caused corruption of the Ext2FS file format because
the Ext2FS uses 'traverse_as_directory' internally when manipulating
the file system. The result was a mixture between EXT2_FT_* and DT_*
file types in the internal Ext2FS structures.
Starting with this commit, the conversion from internal filesystem file
types to the user facing DT_* types happens at a later stage,
in the 'FileDescription::get_dir_entries' function which is directly
used by sys$get_dir_entries.
This fixes an issue we had in the git port where git would not
recognize untracked files (for example in 'git status').
When git used readdir, the 'd_type' field in the dirent struct contained
bad values (Specifically, it contained the values defiend in
Kernel/FileSystem/ext2_fs.h instead of the ones in LibC/dirent.h).
After this fix, we can create a new git repository with 'git init', and
then stage and commit files as usual.