Extend reserve_irqs, allocate_irq, enable_interrupt and
disable_interrupt API to add MSI support in PCI device.
The current changes only implement single MSI message support.
TODOs have been added to support Multiple MSI Message (MME) support in
the future.
Add a struct named MSIInfo that stores all the relevant MSI
information as a part of PCI DeviceIdentifier struct.
Populate the MSI struct during the PCI device init.
Add reserve_irqs, allocate_irq, enable_interrupt and disable_interrupt
API to a PCI device.
reserve_irqs() can be used by a device driver that would like to
reserve irqs for MSI(x) interrupts. The API returns the type of IRQ
that was reserved by the PCI device. If the PCI device does not support
MSI(x), then it is a noop.
allocate_irq() API can be used to allocate an IRQ at an index. For
MSIx the driver needs to map the vector table into the memory and add
the corresponding IRQ at the given index. This API will return the
actual IRQ that was used so that the driver can use it create interrupt
handler for that IRQ.
{enable, disable}_interrupt API is used to enable or disable a
particular IRQ at the given index. It is a noop for pin-based
interrupts. This could be used by IRQHandler to enable or disable an
interrupt.
Add a struct named MSIxInfo that stores all the relevant MSIx
information as a part of PCI DeviceIdentifier struct.
Populate the MSIx struct during the PCI device init. As the
DeviceIdentifier struct need to populate MSIx info, don't mark
DeviceIdentifier as const in the PCI::Device class.
Rename the initialize method to initialize_virtio_resources so it's
clear what this method is intended for.
To ensure healthier device initialization, we could also return the type
of ErrorOr<void> from this method, so in all overriden instances and in
the original method code, we could leverage TRY() pattern which also
does simplify the code a bit.
To do this we also need to get rid of LockRefPtrs in the USB code as
well.
Most of the SysFS nodes are statically generated during boot and are not
mutated afterwards.
The same goes for general device code - once we generate the appropriate
SysFS nodes, we almost never mutate the node pointers afterwards, making
locking unnecessary.
These were easy to pick-up as these pointers are assigned during the
construction point and are never changed afterwards.
This small change to these pointers will ensure that our code will not
accidentally assign these pointers with a new object which is always a
kind of bug we will want to prevent.
- Instead of taking the first new thread as an out-parameter, we now
bundle the process and its first thread in a struct and use that
as the return value.
- Make all Process factory functions return ErrorOr. Use this to convert
some places to more TRY().
- Drop the "try_" prefix on Process factory functions.
This is an implementation that tries to follow the spec as closely as
possible, and works with Qemu's Intel HDA and some bare metal HDA
controllers out there. Compiling with `INTEL_HDA_DEBUG=on` will provide
a lot of detailed information that could help us getting this to work
on more bare metal controllers as well :^)
Output format is limited to `i16` samples for now.
This configuration exposes a suboptimal mechanism to access other
VirtIO device configurations. It is also the only configuration to use a
zero length for a configuration structure, and specify a valid BAR which
triggered a kernel panic when attaching a virtio-gpu-pci device before
95b15e4901 was applied.
The real solution for that problem is to ignore this configuration type
because we never actually use it. It means that we can VERIFY that all
other configuration types have a valid length, as being expected.
These configurations are simply invalid. Ignoring those allow us to boot
with the virtio-gpu-pci device (in addition to the already supported
virtio-vga PCI device).
This patch switches away from {Nonnull,}LockRefPtr to the non-locking
smart pointers throughout the kernel.
I've looked at the handful of places where these were being persisted
and I don't see any race situations.
Note that the process file descriptor table (Process::m_fds) was already
guarded via MutexProtected.
This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
Since the ProcFS doesn't hold many global objects within it, the need
for a fully-structured design of backing components and a registry like
with the SysFS is no longer true.
To acommodate this, let's remove all backing store and components of the
ProcFS, so now it resembles what we had in the early days of ProcFS in
the project - a mostly-static filesystem, with very small amount of
kmalloc allocations needed.
We still use the inode index mechanism to understand the role of each
inode, but this is done in a much "static"ier way than before.
For each exposed PCI device in sysfs, there's a new node called "rom"
and by reading it, it exposes the raw data of a PCI option ROM blob to
a user for examining the blob.
There are now 2 separate classes for almost the same object type:
- EnumerableDeviceIdentifier, which is used in the enumeration code for
all PCI host controller classes. This is allowed to be moved and
copied, as it doesn't support ref-counting.
- DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This
class uses ref-counting, and is not allowed to be copied. It has a
spinlock member in its structure to allow safely executing complicated
IO sequences on a PCI device and its space configuration.
There's a static method that allows a quick conversion from
EnumerableDeviceIdentifier to DeviceIdentifier while creating a
NonnullRefPtr out of it.
The reason for doing this is for the sake of integrity and reliablity of
the system in 2 places:
- Ensure that "complicated" tasks that rely on manipulating PCI device
registers are done in a safe manner. For example, determining a PCI
BAR space size requires multiple read and writes to the same register,
and if another CPU tries to do something else with our selected
register, then the result will be a catastrophe.
- Allow the PCI API to have a united form around a shared object which
actually holds much more data than the PCI::Address structure. This is
fundamental if we want to do certain types of optimizations, and be
able to support more features of the PCI bus in the foreseeable
future.
This patch already has several implications:
- All PCI::Device(s) hold a reference to a DeviceIdentifier structure
being given originally from the PCI::Access singleton. This means that
all instances of DeviceIdentifier structures are located in one place,
and all references are pointing to that location. This ensures that
locking the operation spinlock will take effect in all the appropriate
places.
- We no longer support adding PCI host controllers and then immediately
allow for enumerating it with a lambda function. It was found that
this method is extremely broken and too much complicated to work
reliably with the new paradigm being introduced in this patch. This
means that for Volume Management Devices (Intel VMD devices), we
simply first enumerate the PCI bus for such devices in the storage
code, and if we find a device, we attach it in the PCI::Access method
which will scan for devices behind that bridge and will add new
DeviceIdentifier(s) objects to its internal Vector. Afterwards, we
just continue as usual with scanning for actual storage controllers,
so we will find a corresponding NVMe controllers if there were any
behind that VMD bridge.
A lot of places were relying on AK/Traits.h to give it strnlen, memcmp,
memcpy and other related declarations.
In the quest to remove inclusion of LibC headers from Kernel files, deal
with all the fallout of this included-everywhere header including less
things.
These are formatters that can only be used with debug print
functions, such as dbgln(). Currently this is limited to
Formatter<ErrorOr<T>>. With this you can still debug log ErrorOr
values (good for debugging), but trying to use them in any
String::formatted() call will fail (which prevents .to_string()
errors with the new failable strings being ignored).
You make a formatter debug only by adding a constexpr method like:
static constexpr bool is_debug_only() { return true; }
A virtual method named device_name() was added to
Kernel::PCI to support logging the PCI::Device name
and address using dmesgln_pci. Previously, PCI::Device
did not store the device name.
All devices inheriting from PCI::Device now use dmesgln_pci where
they previously used dmesgln.
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
From now on, we don't allow jailed processes to open all device nodes in
/dev, but only allow jailed processes to open /dev/full, /dev/zero,
/dev/null, and various TTY and PTY devices (and not including virtual
consoles) so we basically restrict applications to what they can do when
they are in jail.
The motivation for this type of restriction is to ensure that even if a
remote code execution occurred, the damage that can be done is very
small.
We also don't restrict reading and writing on device nodes that were
already opened, because that limit seems not useful, especially in the
case where we do want to provide an OpenFileDescription to such device
but nothing further than that.
This patch fixes some include problems on aarch64. aarch64 is still
currently broken but this will get us back to the underlying problem
of FloatExtractor.
Add support for async transfers by using a separate kernel task to poll
a list of active async transfers on a set time interval, and invoke
their user-provided callback function when they are complete. Also add
support for the interrupt class of transfers, building off of this async
functionality.
We now have a seperately allocated structure for the bookkeeping
information in the QueueHead and TransferDescriptor UHCI strucutres.
This way, we can support 64-bit pointers in UHCI, fixing a problem where
32-bit pointers would truncate the upper 32-bits of the (virtual)
address of the descriptor, causing a crash.
Co-authored-by: b14ckcat <b14ckcat@protonmail.com>
Decompose the current monolithic USBD Pipe interface into several
subclasses, one for each pair of endpoint type & direction. This is to
make it more clear what data and functionality belongs to which Pipe
type, and prevent nonsensical things like trying to execute a control
transfer on a non-control pipe. This is important, because the Pipe
class is the interface by which USB device drivers will interact with
the HCD, so the clearer and more explicit this interface is the better.
Allocate DMA buffer pages for use within the USBD Pipe class, and allow
for the user to specify the size of this buffer, rounding up to the
next page boundary.